Journal

Category Archive Journal

Bio-catharantin effects on phenotypic traits and chromosome number of shallots (Allium Cepa L. var. Ascalonicum ‘Tajuk’)

A.T. BILLA, S.S. LESTARI, B.S. DARYONO, and A.S. SUBIASTUTI

SUMMARY

The seasonal production of Allium cepa var. ascalonicum causes a rise in its demand during the offseason. Consumers mostly prefer onion cultivars like the ‘Super Philip’, because of their high productivity, large and round bulbs, shiny appearance, and less spicy taste. In plant breeding, polyploidy induction through mutagens is a technique often used to produce shallot cultivars of better quality. Bio-Catharantin from the leaf extract of Catharanthus roseus L. is used as a polyploid induction agent instead of colchicine. The latest study aimed to determine the effect of BioCatharantin concentration (0.2% and 0.4%) on phenotypic traits (plant height, bulb mass, and the number of bulbs), and the chromosome number to determine the minimum concentration that could cause polyploidization in shallots. The research was conducted from December 2020 to February 2021 in a greenhouse in Madurejo, Prambanan, and the Laboratory of Genetics and Breeding, Faculty of Biology, Gadjah Mada University, Indonesia. Bio-Catharantin concentration did not affect plant height which was comparable with the control. Both treatments caused an increase in bulb mass up to 37.7 and 41.76 g at the concentrations of 0.2% and 0.4%, respectively, compared with the control (31.47 g). The number of bulbs increased up to 10.6 and 9.8 g for 0.2% and 0.4% concentrations, respectively, compared with 8.8 in the control. The ploidy level of cells was increased from 2n (16) to 3n (24) at 2% and 4n (32) at 4% Bio-Catharantin.

Download the article

Date published: June 2022

Keywords: Shallots (Allium cepa L.), Catharanthus roseus L., bio-catharantin, polyploid, chromosome number, phenotypic traits

DOI: http://doi.org/10.54910/sabrao2022.54.2.11

Isolation and diagnosis of cadmium-resistant bacteria and its potential phytoremediation with the broad bean plant

I.A. ABED, A. MARZOOG, A.M.S. ADDAHERI, and M.H. AL-ISSAWI

SUMMARY

Results of the study proved that phytoremediation can be a promising technique to treat cadmium (Cd)-contaminated soil. Four bacteria types were isolated from the soil; two are autotrophic and others are heterotrophic. Autotrophic bacteria were dominant in soils with 42 mg Cd Kg-1. The total count and diversity of both bacteria types decreased with the increase of Cd in media and reached their minimum limit of tolerance at 60 mg Cd L-1 in terms of the heterotrophic bacteria, while the minimum limit of tolerance in the case of autotrophic bacteria was at 110 mg Cd L-1. The four isolates can form biofilms that ranged in thickness between 2.8–4.3 mm. The tolerant isolates belong to Rhizobium leguminosarum, Pseudomonas fluorescens, Actinobacteria, and Corynebacterium. Shoot and dry weight significantly varied according to the changes in Cd concentrations and isolate types. The level in either shoot or root exceeded critical levels, however, its concentration was higher in the root compared with the shoot. The effect of Cd on broad bean plants began at 80 and 100 mg Cd L-1. The broad bean plant was resistant to growing in the contaminated area by Cd even at 120 mg Cd Kg1DW. The presence of heterotrophic bacteria was noticeably useful for autotrophic bacteria, as well as, for enhancing Cd resistance. The study showed that cooperative phytoremediation could be a safe and active technique to apply in the field soil contaminated with heavy metals.

Download the article

Date published: June 2022

Keywords: Broad bean, cadmium, heavy metals, pollution, resistant bacteria 

DOI: http://doi.org/10.54910/sabrao2022.54.2.17

Gamma-ras and microwave irradiation influence on GUAR (Cyamopsos tetragonoloba: I – markers assisted selection for responding to mutagenic agents

K.A.M. KHALED, F.M. SULTAN, and C.R. AZZAM

SUMMARY

The recent investigation was carried out to determine the effect of different gamma-ray doses and 900 W (2450 MHz) microwave radiation with various exposure times, separately or in combinations, on the yield, yield components, and chemical properties of guar (Cyamopsis tetragonoloba), as well as, to detect variation induction. The cDNA-SCoT technique was used to obtain molecular markers related to some traits. SSR technique was used to sequence the target fragment related to plant height. Gamma-ray doses of 150 and 250 Gy alone, and in combination with 900 W microwaves irradiation applied with different duration or time span (1, 2, 3, and 4 min) influenced the plant height significantly, as well as, number of tillers plant-1 and fresh and dry forage yield, and fresh and dry leaf stem-1ratio. In the second sample, seed yield at harvest time, e.g., pods plant-1, weight of pods plant1 , whole plant dry weight, number of seeds pod-1, length of pod, 100-seed weight, and seeds yield were affected by irradiation with different and varied responses. In the M1 generation, the 18 SCoT primers produced 327 bands ranging between 151–2895 bp in size, out of which 282 were polymorphic (86.24%). In the M2, the 18 SCoT primers produced 328 bands ranging between 2122661 bp in size, out of which 299 were polymorphic (91.16%). The M1 and M2 generations exhibited 89 positive and 39 negative bands, which could be used as marker assisted-selection in response to treated guar plants with different gamma ray doses, separately or in combinations with microwave treatments.

Download the article

Date published: June 2022

Keywords: Gamma irradiation, microwave heating, guar grain, yield and yield components, quality analysis, SCoT 

DOI: http://doi.org/10.54910/sabrao2022.54.2.10

Drought effects on mineral composition of the leaves and seeds of Amaranthus tricolor and Amaranthus cruentus

N.V. TETYANNIKOV, S.M. MOTYLEVA, М.S. GINS, N.V. КOZAK, D.V. PANISCHEVA, M.E. MERTVISCHEVA, L.F. KАBASHNIKOVA, I.N. DOMANSKAYA, and Т.S. PILIPOVICH

SUMMARY

In global climate change, drought stress is one of the environmental restraining factors that can significantly influence the growth and development of crop plants. Drought stress conditions can also cause undesirable changes in plant physiological and metabolic processes. The influence of soil drought on the mineral composition of leaves and seeds of two species of amaranth (Amaranthus tricolor L. and Amaranthus cruentus L.) with С4-type of photosynthesis was studied through energy dispersive spectrometry (ESD). The recent investigations were carried out during the years 20202022 at the Department of Genofonde and Bioresources of Plants, Federal Scientific Center for Horticulture, Moscow, Russia. The research results showed the leaves of both amaranth with major elements, i.e., K (11.23–15.33), Ca (5.15–7.61), P (3.91–3.92), Mg (2.81–3.36), and Cl (1.86–2.29), whereas, relatively lower values were recorded for Fe (0.05–0.48), and Na (0.07–0.11) mass% respectively. Regarding amaranth plants seed composition, the major elements were K (13.86–13.97), P (7.02–9.76), Mg (3.78–5.64), Ca (3.31–4.78), Cl (2.81–5.30), and Mo (2.80–2.86) mass% respectively. In the species, A. tricolor, a strong correlation was observed between the elements, i.e., S-Cu, Mg-Si, Na-Cu, Na-S, Na-Ca, Na-Si, and Si-S in leaves, while in seeds, these were between CaCu, Mg-Cl, Si-Mn, Ca-Mo, and Cl-Mn. In the other species of amaranth, A. cruentus, the elements viz., Mg-S, Mg-Mo, S-Mo, Mg-Cl, S-Cl, Cl-Mo, Cl-P, P-S, Si-Cl, Ca-Mo, S-Ca, Mg-Ca, Mg-P, P-Mo, and Mg-Si in leaves, while Ni-Cu, Mg-P, Si-P, and Si-Cl in seeds also showed strong relationship. Effects of drought led to a weakening of these ties and the formation of new ones. The accumulation of mineral elements in the leaves of amaranth plants varies from species to species under drought conditions, and A. tricolor cv. Valentina was found most resistant to drought conditions.

Download the article

Date published: June 2022

Keywords: Mineral composition, leaves, seeds, drought stress, EDS analysis, Amaranthus tricolor L., Amaranthus cruentus L.

DOI: http://doi.org/10.54910/sabrao2022.54.2.18

Effect of planting and bud placement position on agronomical and physiological traits of sugarcane (Saccharum officinarum L.)

N. MANGRIO, N. MARI, G.S. MANGRIO, Z.A. SOOMRO, A.A. SIMAIR, and B. KUMAR

SUMMARY

Different planting techniques influence the quantitative and qualitative characteristics of sugarcane. This study focused on the hypothesis that altering sett spacing and bud placement position significantly improves sugarcane yield and quality. The experiment was conducted during the periods, 2016–2017 and 2017–2018, under field conditions at the Sugarcane Research Institute, Agriculture Research Centre, Tandojam, Sindh, Pakistan. The sugarcane variety, PSTJ-41, was used for the study in a randomized complete block design (RCBD) with three replications. Spacing between setts included S1 = end to end, S2 = 15 cm, S3 = 22 cm, and S4 = 30 cm. Bud placement position consisted of B1= buds up and down, and B2 = buds faced to ridge. Analysis revealed that sett spacings and bud placement positions significantly (P<0.05) affected almost all the studied agronomical, physiological, and qualitative sugarcane traits. Enhanced sugarcane sprouting (%), crop growth rate (gm-2day-1), leaf area index, cane length (cm), internodes cane-1, millable canes (000 ha-1), Brix (%), commercial cane sugar (CCS %), and cane yield (t ha-1) were observed with setts plantation of a distance at 30 cm apart. In the case of bud position, B2 showed maximum growth, yield, and best quality attributes. The highest and desirable mean values of the various parameters were documented in the interaction of 30 cm sett spacings × buds faced to ridges regarding interactive effects.

Download the article

Date published: June 2022

Keywords: Sugarcane, sett spacing, bud placement position, growth, millable canes, cane yield

DOI: http://doi.org/10.54910/sabrao2022.54.2.19

Ground beetles (Coleoptera: Carabidae) in different agrosystems of Southeast Kazakhstan

R.U. SAIMOVA, K.I. BATYROVA, N.A. BEKENOVA, E. KAUYNBAEVA, and B.K. ESIMOV

SUMMARY

The recent study on ground beetles (Carabidae) was carried out in 2020 over five different agroecosystems, i.e., alfalfa, barley, corn, soybean, and triticale, at the Kaskelen Experimental Farm, Southeast Kazakhstan. Overall, 38 species of ground beetles related to 24 genera were identified. From these, the Harpаlus rufipes, Poecilus cupreusP. versicolor were the dominant ones in the different agroecosystems. Most of the ground beetles are general predators and useful as entomophages. These beetles and their larvae exterminate various agricultural pests. However, the presence of P. versicolorand P. cupreus suggests a threat to the crops. Those species have a mixed diet and are also known as economically significant pests, of which the most famous is the ground beetle Zabrus morio. Different agroecosystems have shown different distributions of ground beetle species, indicating the influence of cultivated crops on the formation of the ground beetle community. Findings from the study could provide the basis for designing crop management programs after promoting the presence of ground beetles that can contribute to the prevention and control of agricultural pests.

Download the article

Date published: June 2022

Keywords: Ground beetles diversity, species distribution, crop management, pests, agro-ecosystems 

DOI: http://doi.org/10.54910/sabrao2022.54.2.21

Tags, , , , ,

Genetic and physiological aspects of silique shattering in rapeseed and mustard

H.S.B. MUSTAFA, T. MAHMOOD, H. BASHIR, E. HASAN, A.M. DIN, S. HABIB, M. ALTAF, R. QAMAR, M. GHIAS, M.R. BASHIR, M. ANWAR, S.A. ZAFAR, I. AHMAD, M.U. YAQOOB, F. RASHID, G.A. MAND, A. NAWAZ, and J. SALIM

SUMMARY

Rapeseed (Brassica napus L.) and mustard (Brassica juncea L.) are two important oilseed crops grown worldwide for edible oil and meal production, as well as, a source of renewable energy. Silique shattering at the maturity stage is the major cause of seed yield reduction in brassica. Losses in seed yield are more in developing countries due to poor management and the non-availability of combine harvesters. Silique shattering resistance is essential for achieving good seed yield especially in Brassica napus. The silique on plants of rapeseed and mustard mature in different phases due to indeterminate growth habit, which is also a reason for shattering losses. Silique shattering is linked with the creation of a dehiscence zone in a brassica pod. When the siliqua wall loses its hydration, along the length of the siliqua, a few cell layers separate the replum from the pericarp tip of the two silique valves. In the dehiscence zone, it involves the collapse of cell walls and cell separation, as well as, the destruction of the middle lamella and enhanced hydrolytic enzyme activity. To avoid seed yield losses, resistance against silique shattering is essential in rapeseed and mustard cultivars. There are multiple QTLs discovered that control variance in silique shattering. Previous studies validated the shattering process in the model plant Arabidopsis thaliana was controlled by eight different genes. However, their role in controlling silique shattering in rapeseed and mustard is unknown. Modern tools of mutation breeding and genetic engineering, especially CRISPR/Cas9 technology, can be utilized to identify the genetic source for shattering resistance in rapeseed and mustard, which will be helpful for the development of silique-shattering resistant cultivars under changing climatic regime.

Download the article

Date published: June 2022

Keywords: Brassica, breeding tools, silique shattering, genetic resistance, seed yield 

DOI: http://doi.org/10.54910/sabrao2022.54.2.1

Tags, , , ,

Combining ability and heterotic studies in aromatic rice through line by tester analysis

M.Z. ISLAM, M.A.A. GALIB, M.M. AKAND, L.F. LIPI, A. AKTER, M.Q.I. MATIN, and N.A. IVY

SUMMARY

Estimating combining ability helps to evaluate genotypes and determine the nature and degree of gene activities. This study aimed to identify the best parental genotypes and superior hybrids of aromatic rice using a line × tester mating design. Five CMS (cytoplasmic male sterility) lines and four testers of local and exotic origins of aromatic rice were studied in this experiment. The unweighted pair group method with arithmetic mean (UPGMA) cluster analysis revealed genetic variability among the studied CMS and restorer lines. The analysis of variance showed that parental lines, testers, and their line by testers populations had enough genetic variability. Five out of 20 hybrids found positive heterosis for grain yield, and the hybrid BRRI1A × BUdhan2R had the maximum heterosis. In terms of the agronomic traits evaluated, specific combining ability (SCA) effects were higher than general combining ability (GCA) effects. Genotypes IR58025A, BRRI1A, and BUdhan2R were identified as superior parents based on their performances for yield traits and GCA effects in the desired direction. IR58025A × BUdhan2R and BRRI1A × BUdhan2R were chosen as promising genotypes due to their highest grain yield, heterosis, and desirable SCA. Low ratios of σ2gca/σ2sca and (σ2D/σ2A)1/2, and low to high estimations of narrow-sense heritability indicated that both additive and non-additive gene effects predominated in the inheritance of the studied traits. Pearson’s correlation showed that among the 10 studied traits, grain yield plant-1 was highly significant and positively correlated with flag leaf area, spikelet fertility (%), and filled grains panicle-1, as well as, significant and negatively correlated with days to flowering and days to maturity. Superior parental genotypes and hybrids that have been identified can be employed as donDator parents to improve the grain yield in aromatic rice.

Download the article

Date published: June 2022

Keywords: Aromatic rice, heterosis, line by tester analysis, GCA and SCA, cluster analysis, correlation

DOI: http://doi.org/10.54910/sabrao2022.54.2.2

Characterization of bread wheat segregating populations under optimum irrigation and water stress conditions

D.A. SWELAM, A.H. SALEM, M.A. HASSAN, and M.M.A. ALI

SUMMARY

Water scarcity is currently threatening almost every country in the arid regions. Using advanced generations, breeding can help in the development of improved bread wheat genotypes for adaptation to abiotic and biotic stresses. The pedigree selection was practiced on two bread wheat crosses (Sids 12 × Line 44) and (Line 20 × Sakha 93) during two seasons (2017−2018 and 2018–2019) under full irrigation (optimal conditions) and limited irrigation (drought-stressed) conditions at Kafer El-Hamam Agriculture Station, Agricultural Research Center, Giza, Egypt. The results indicated significant differences in two crosses of F2 and F3 families for all the studied traits under optimal irrigation and water stress. The estimates of phenotypic coefficients of variability (PCV) were slightly higher than those of genotypic coefficients of variability (GCV) for all the traits in two crosses of both water regimes. Broad-sense heritability (h2 Bs) estimates, accompanied with high magnitudes of the genetic advance (GA), were higher under optimal irrigation than water stress in F2 and F3 generations of two crosses. A positive correlation was recorded between spikes per plant and grain yield in both water treatments of two crosses. A positive correlation (r) was revealed between offsprings (F3) and their parents (F2) in yield and its components under optimal irrigation and water stress conditions. Hence, the hybridization followed by selection under optimal and drought stress conditions have been a demand to accelerate the genetic gain of wheat grain yield.

 

Download the article

Date Published: June 2022

Keywords: Wheat, selection parameters, heritability, genetic advance, water stress

DOI: http://doi.org/10.54910/sabrao2022.54.2.6

Tags

In vitro mutagenesis and propagation of Paulownia tomentosa (Thumb) for salt tolerance

M.E.A.E. AHMED, T.M. ABD ELAZIEM, and A.A. NOWER

SUMMARY

The study aimed to refine a protocol for micropropagation and to develop the plant’s ability to withstand salinity by the use of physical and chemical mutations, so that it can be cultivated in new lands that are not suitable for other crops. Shoot tips and stem segments of Paulownia tomentosa were firstly sterilized and cultured on different media types containing benzyl amino purine (BAP) at 0, 0.1, 0.25, 0.5, and 1.0 mg/l to choose the best combination for explant growth and proliferation. To examine the plant’s ability to withstand salinity, Paulownia tomentosa shoots were first irradiated with the doses of gamma rays at 0.0, 30, 60, 90, 120, and 150 Gray (Gy) and secondly, cultured on a WPM medium containing sodium azide “NaN3” at 0.0, 0.1, 0.2, 0.4, 0.8. and 1.0 mM for 5 min. Both irradiated and NaN3-treated shoots were cultured on different levels of NaCl. Inter Simple Sequence Repeats (ISSR) technique was used to detect variations caused by gamma rays and NaN3. Results showed that at 120 Gy of gamma-ray, one fragment with primer UBC824 vanished and one fragment with primer 17898B at 150 Gy appeared. In comparison, one fragment with primer either UBC873 or UBC867 at 1.0 mM and 0.8 mM of NaN3, respectively, can be considered a positive marker of Paulownia salt tolerance. Treated shoots gave the greatest number of roots/shoot (6.0) on WPM half strength with NAA at 2.0 mg/l. Increasing gamma doses or NaN3 concentrations decreased survival rate. Variation created by mutation provides the raw material for natural selection and is a driving force in evolution. Keywords: Gamma-ray, mutagenesis, NaN3, Paulownia tomentosa, proliferation, salt tolerance, tissue culture Key findings: At 120 Gy of gamma-ray, one fragment with primer UBC824 vanished and one fragment with primer 17898B at 150 Gy appeared. In comparison, one fragment with primer either UBC873 or UBC867 at 1.0 mM and 0.8 mM of NaN3, respectively, and one fragment with primer UBC828 at 0.8 mM of NaN3 appeared, which can be considered as a positive marker of Paulownia linked to salt tolerance.

Download the article

Date Published: June 2022

Keywords: Gamma-ray, mutagenesis, NaN3, Paulownia tomentosa, proliferation, salt tolerance, tissue culture

DOI: http://doi.org/10.54910/sabrao2022.54.2.8