Journal

Category Archive Journal

Physiological and molecular response of cotton (Gossypium hirsutum L.) to heat stress at the seedling stage

M. SAJID, M.A.B. SADDIQUE, M.H.N. TAHIR, A. MATLOOB, Z. ALI, F. AHMAD, Q. SHAKIL, Z.U. NISA, and M. KIFAYAT

SUMMARY

The ideal temperature range for the optimal growth and development of cotton is 25 °C–32 °C and high temperature adversely affects the metabolic activities of plant cells. This study was aimed to screen heat-tolerant cotton genotypes based on physiological and molecular parameters. Experiments were carried out during 2019–2020 at the MNS-University of Agriculture, Multan, Pakistan. The research comprised two parts. In the first experiment, 30 cotton genotypes were sown in a completely randomized design with three replications under laboratory conditions for the determination of cell membrane thermostability. Principal component analysis was performed, and four genotypes, i.e., two heat-tolerant (‘CRIS-5A’ and ‘VH-338’) and two heat-sensitive (‘FH-242’ and ‘VH-281’) genotypes, were selected. In the second experiment, the screened cotton genotypes were sown in pots in a factorial complete randomized design with three replications and two treatments (normal and heat treatment). Heat stress was applied at the seedling stage, and eight leaf samples (one from each experimental unit) were collected. Two genes were used for molecular analysis and were amplified in all eight cDNA samples. Molecular analysis indicated the presence of HSP70 and HSP26 genes in the cotton genotypes, and the expression of these genes was measured by using ImageJ software. The gene expression level of HSP70 was very high (16.41%) in ‘VH-281’, which is a heat-sensitive genotype under heat stress. The sensitive genotype ‘FH-242’ exhibited the highest gene expression level of HSP26 (20.32%) under normal conditions. A similar sequence of HSP70 gene of Agave sisalana was amplified for the first time in cotton. It is a good indicator for screening heat tolerant cotton genotypes at the molecular level.

Download the article

Keywords: CMT, cotton, screening, heat shock proteins, high temperature, RCI%, oxidative damage 

DOI: http://doi.org/10.54910/sabrao2022.54.1.5

Combining ability and heterosis in Sorghum (Sorghum bicolor L.)

MAFTUCHAH, H. WIDYANINGRUM1, A. ZAINUDIN1, SULISTYAWATI, H.A. RESWARI, and H. SULISTIYANTO

SUMMARY

For the sustainable improvement of sorghum (Sorghum bicolor L.), local genotypes were conventionally crossed in East Java, Indonesia to determine a) the crossing success of different genotypes, b) germination percentage and seed setting traits, and c) the combining ability and heterotic effect of sorghum parental genotypes and their F1 diallel hybrids. Three sorghum genotypes (‘Lamongan-1’, ‘Tulungagung-2’, and ‘Jombang’) from the local germplasm were collected from various regions in East Java, Indonesia, and were crossed in a complete diallel design. The experiment was carried out in a randomized complete block design with four replications during 2018–2019 at the Agrotechnology Laboratory, Faculty of Agriculture, University of Muhammadiyah, Malang, Indonesia. Results showed that the parental genotypes and their F1 hybrids exhibited significant differences in seed weight and seed diameter and nonsignificant differences in germination percentage and seed setting. The parental genotype ‘Tulungagung-2’ and its hybrids ‘Jombang’ × ‘Tulungagung-2’, ‘Tulungagung-2’ × ‘Lamongan-1’, and ‘Jombang’ × ‘Tulungagung-2’ presented the highest germination percentages, seed setting, seed weights, and seed diameters. The genotype ‘Tulungagung-2’ had the highest general combining ability and was identified as a good general paternal and maternal parent for the production of promising F1 hybrids. The hybrid ‘Jombang’ × ‘Lamongan-1’ had the highest specific combining ability for all of the characters and was recognized as a promising F1 hybrid for improving sorghum yield. Cluster analysis divided all of the parental genotypes and their F1 hybrids into two large groups with a similarity of 13.13%.

Download the article

Keywords: Conventional breeding, parental genotypes, F1 diallel hybrids, crossing success, germination percentage, heterosis, heterobeltiosis, combining ability

DOI: http://doi.org/10.54910/sabrao2022.54.1.4

Tags

Genetic variability and inheritance pattern of yield components through diallel analysis in spring wheat

D.E. QULMAMATOVA, S.K. BABOEV and A.K. BURONOV

SUMMARY

Wheat is the third most important staple crop in the world, hence, its sustainable production remained the primary focus due to increasing global consumption. This study aims to determine the genetic potential of spring soft wheat (Triticum aestivum L.) F2 populations for yield traits. Six wheat genotypes were used for diallel reciprocal crossing and a total of 12 hybrids in comparison to parental genotypes were studied from 2015 to 2018 at the Institute of Genetics and Plant Experimental Biology, Academy of Sciences, Tashkent, Uzbekistan. In parental genotypes, the average spikelets per spike were similar, however, the highest index per spike was recorded in cultivars Bardosh (56.8±1.02), Unumli Bugdoy (57.9±1.05), and Sayhun(56.3±0.79). The F2 populations were recorded with the highest number of spikelets per spike and shifted to the right side by 2-3 classes compared to the parental genotypes. The appearance of right-sided regression and identified genotypes with higher 1000-grain weight was observed in the populations of cultivar Bardosh. Populations with higher indices (3.5 to 4.4) than parental genotypes were observed in the cross Bardosh × Unumli Bugdoy (21.7%). The range of variability for 1000-grain weight in the cultivars Kroshka and Bardosh belonged to 2nd class, and cultivars Kayraktash, Unumli Bugdoy, Saykhun, and K-5076 belonged to 3rd class. Populations with 1000-grain weight ranged from 44.0 g to 47.9 g, with a percentage estimate of 63.3% for cultivar Kroshka, and 76.7% for Kayroktosh. In the second generation, the variability range was distributed into eight classes. Larger grains were observed in the hybrids of cultivar Kayroktash. Hybridological analysis of the inheritance of quantitative traits exhibited that the grains per spike were mainly inherited according to the type of dominance of the best parent with a high trait index. The grain number and grain weight per spike were inherited by overdominance type of gene action in the characterized F1 populations.

Download the article

Keywords: Bread wheat, quantitative traits, yield, transgressive variability, reciprocal combination

http://doi.org/10.54910/sabrao2022.54.1.3

Tags,

Hybrid vigor and its deterioration in intraspecific populations of upland cotton

G.S. MANGI, Z.A. SOOMRO, G.M. BALOCH, Q.D. CHACHAR, and S.N. MARI

SUMMARY

Seven lines (‘VH-292’, ‘VH-259’, ‘Bt-802’, ‘Sadori’, ‘Shahbaz’, ‘CRIS-342’, and ‘Bt.ZZ.NL-370’), and three testers (‘VH-291’, ‘FH-113’, and ‘IR-3701’) of upland cotton (Gossypium hirsutum L.) were crossed through line-by-tester mating to produce 21 F1 hybrids. The lines, testers, and their F1 and F2populations were grown in a randomized complete block design with three replications at Sindh Agriculture University, Tandojam, Pakistan, in consecutive cropping seasons. Analysis of variance revealed that the genotypes (including parental lines, testers, and their 21 F1 and F2 populations) and parent vs. hybrids differed significantly for all the studied traits, except for plant height in the F2 population and sympodial branches plant−1 in the F1 and F2 populations. Lines ‘VH-292’ and ‘VH-259’ and testers ‘VH-291’ and ‘FH-113’ exhibited higher plant height, sympodial branches, bolls plant−1 and boll weight than other genotypes and were identified as suitable parental genotypes for hybridization. The F1 and F2 populations of ‘VH-292’ × ‘VH-291’ and ‘VH-292’ × ‘FH-113’ produced more sympodial branches, bolls plant−1, and seed cotton yield plant−1 than other crosses. The F1 hybrid of ‘Bt-802’ × ‘VH-291’ and the F2 population of the ‘Sadori’ × ‘VH-291’ cross produced higher boll weight than other genotypes. Overall, the mean performance of the F1 hybrids for all the traits was better than that of their parents and the F2 populations likely due to heterotic effects in the F1 populations and inbreeding depression in the F2 populations. The significant mean squares for parental genotypes, crosses, and parents vs. crosses indicated that the data obtained in this work are valuable for determining parental performance, hybrid evaluation, heterotic effects, and inbreeding depression. Significant mean squares due to parents vs. crosses revealed the good scope of heterotic effects in the F1 populations for all the traits.

Download the article

Keywords: Line-by-tester analysis, heterosis, heterobeltiosis, inbreeding depression, morphological and yield traits, upland cotton

DOI: http://doi.org/10.54910/sabrao2022.54.1.2

Exotic wheat genotypes response to water-stress conditions

N.Y. SIAL, M. FAHEEM, M.A. SIAL, A.R. ROONJHO, F. MUHAMMAD, A.A. KEERIO, M. ADEEL, S. ULLAH, Q. HABIB, and M. AFZAL

SUMMARY

Drought is the most devastating abiotic stress which has significantly threatened global wheat production. The recent study was designed to evaluate the performance of eight exotic wheat lines through the Drought Spring Bread Wheat Yield Trial (DSBWYT), along with a local drought-tolerant check cultivar, Khirman, under water-stressed conditions based on agronomic and yield-related traits. The experiment was conducted during cropping season 2019–2020 in a randomized complete block design with three replications at the Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan. The analysis of variance revealed that there was a significant difference among the genotypes for all studied traits. The genotype DSBWYT-8 possessed better agronomic traits and growth features like early growth vigor and early ground cover. On the other hand, the genotype DSBWYT-4 performed better in yield and yield-related traits like main spike yield, grains per spike, and 1000-grains weight. Both genotype revealed excellent plot grain yield and harvest index and were not significantly different from each other. The cluster analysis grouped all the genotypes into three clades. The droughttolerant local check cultivar Khirman clustered with genotypes DSBWYT-2, DSBWYT-4, and DSBWYT-8 thus, this clade can be regarded as drought tolerant. The second cluster comprised of two genotypes, i.e., DSBWYT-1 and DSBWYT-5, which performed relatively low as compared to genotypes present in the drought-tolerant cluster, whereas the genotypes DSBWYT-3, DSBWYT-6, and DSBWYT-7 clustered together to represent low yielding genotypes under drought condition as compared with the check cultivar Khirman. Based on these results, the genotypes DSBWYT-2, DSBWYT-4, and DSBWYT-8 can be recommended as the drought-tolerant genotypes. Keywords: Spring wheat, drought, yield components, agronomic traits

Download the article

Date published: June 2022

Keywords: Spring wheat, drought, yield components, agronomic traits

DOI: http://doi.org/10.54910/sabrao2022.54.2.8