MAFTUCHAH, H. WIDYANINGRUM1, A. ZAINUDIN1, SULISTYAWATI, H.A. RESWARI, and H. SULISTIYANTO
SUMMARY
For the sustainable improvement of sorghum (Sorghum bicolor L.), local genotypes were conventionally crossed in East Java, Indonesia to determine a) the crossing success of different genotypes, b) germination percentage and seed setting traits, and c) the combining ability and heterotic effect of sorghum parental genotypes and their F1 diallel hybrids. Three sorghum genotypes (‘Lamongan-1’, ‘Tulungagung-2’, and ‘Jombang’) from the local germplasm were collected from various regions in East Java, Indonesia, and were crossed in a complete diallel design. The experiment was carried out in a randomized complete block design with four replications during 2018–2019 at the Agrotechnology Laboratory, Faculty of Agriculture, University of Muhammadiyah, Malang, Indonesia. Results showed that the parental genotypes and their F1 hybrids exhibited significant differences in seed weight and seed diameter and nonsignificant differences in germination percentage and seed setting. The parental genotype ‘Tulungagung-2’ and its hybrids ‘Jombang’ × ‘Tulungagung-2’, ‘Tulungagung-2’ × ‘Lamongan-1’, and ‘Jombang’ × ‘Tulungagung-2’ presented the highest germination percentages, seed setting, seed weights, and seed diameters. The genotype ‘Tulungagung-2’ had the highest general combining ability and was identified as a good general paternal and maternal parent for the production of promising F1 hybrids. The hybrid ‘Jombang’ × ‘Lamongan-1’ had the highest specific combining ability for all of the characters and was recognized as a promising F1 hybrid for improving sorghum yield. Cluster analysis divided all of the parental genotypes and their F1 hybrids into two large groups with a similarity of 13.13%.
Wheat is the third most important staple crop in the world, hence, its sustainable production remained the primary focus due to increasing global consumption. This study aims to determine the genetic potential of spring soft wheat (Triticum aestivum L.) F2 populations for yield traits. Six wheat genotypes were used for diallel reciprocal crossing and a total of 12 hybrids in comparison to parental genotypes were studied from 2015 to 2018 at the Institute of Genetics and Plant Experimental Biology, Academy of Sciences, Tashkent, Uzbekistan. In parental genotypes, the average spikelets per spike were similar, however, the highest index per spike was recorded in cultivars Bardosh (56.8±1.02), Unumli Bugdoy (57.9±1.05), and Sayhun(56.3±0.79). The F2 populations were recorded with the highest number of spikelets per spike and shifted to the right side by 2-3 classes compared to the parental genotypes. The appearance of right-sided regression and identified genotypes with higher 1000-grain weight was observed in the populations of cultivar Bardosh. Populations with higher indices (3.5 to 4.4) than parental genotypes were observed in the cross Bardosh × Unumli Bugdoy (21.7%). The range of variability for 1000-grain weight in the cultivars Kroshka and Bardosh belonged to 2nd class, and cultivars Kayraktash, Unumli Bugdoy, Saykhun, and K-5076 belonged to 3rd class. Populations with 1000-grain weight ranged from 44.0 g to 47.9 g, with a percentage estimate of 63.3% for cultivar Kroshka, and 76.7% for Kayroktosh. In the second generation, the variability range was distributed into eight classes. Larger grains were observed in the hybrids of cultivar Kayroktash. Hybridological analysis of the inheritance of quantitative traits exhibited that the grains per spike were mainly inherited according to the type of dominance of the best parent with a high trait index. The grain number and grain weight per spike were inherited by overdominance type of gene action in the characterized F1 populations.
G.S. MANGI, Z.A. SOOMRO, G.M. BALOCH, Q.D. CHACHAR, and S.N. MARI
SUMMARY
Seven lines (‘VH-292’, ‘VH-259’, ‘Bt-802’, ‘Sadori’, ‘Shahbaz’, ‘CRIS-342’, and ‘Bt.ZZ.NL-370’), and three testers (‘VH-291’, ‘FH-113’, and ‘IR-3701’) of upland cotton (Gossypium hirsutum L.) were crossed through line-by-tester mating to produce 21 F1 hybrids. The lines, testers, and their F1 and F2populations were grown in a randomized complete block design with three replications at Sindh Agriculture University, Tandojam, Pakistan, in consecutive cropping seasons. Analysis of variance revealed that the genotypes (including parental lines, testers, and their 21 F1 and F2 populations) and parent vs. hybrids differed significantly for all the studied traits, except for plant height in the F2 population and sympodial branches plant−1 in the F1 and F2 populations. Lines ‘VH-292’ and ‘VH-259’ and testers ‘VH-291’ and ‘FH-113’ exhibited higher plant height, sympodial branches, bolls plant−1 and boll weight than other genotypes and were identified as suitable parental genotypes for hybridization. The F1 and F2 populations of ‘VH-292’ × ‘VH-291’ and ‘VH-292’ × ‘FH-113’ produced more sympodial branches, bolls plant−1, and seed cotton yield plant−1 than other crosses. The F1 hybrid of ‘Bt-802’ × ‘VH-291’ and the F2 population of the ‘Sadori’ × ‘VH-291’ cross produced higher boll weight than other genotypes. Overall, the mean performance of the F1 hybrids for all the traits was better than that of their parents and the F2 populations likely due to heterotic effects in the F1 populations and inbreeding depression in the F2 populations. The significant mean squares for parental genotypes, crosses, and parents vs. crosses indicated that the data obtained in this work are valuable for determining parental performance, hybrid evaluation, heterotic effects, and inbreeding depression. Significant mean squares due to parents vs. crosses revealed the good scope of heterotic effects in the F1 populations for all the traits.
Citation: Khan SH, Aslam M, Bibi A, Khan HZ (2023). GGE biplot analysis for zinc quality and yield stability of exotic maize hybrids. SABRAO J. Breed. Genet. 55(1): 268-278. http://doi.org/10.54910/sabrao2023.55.1.25.
Summary
Zinc deficiency is one of the major causes of malnutrition in the communities due to the consumption of zinc-deficient staple food. With accessibility and affordability, biofortification is an agricultural intervention beneficial for all the stakeholders involved as any actor. A total of 16 exotic zinc biofortified maize hybrids developed at different maize research stations of CIMMYT got introduced and evaluated across three separate locations in major maize growing areas of Punjab and Khyber Pakhtunkhwa (KP), i.e., Faisalabad, Sahiwal, and Nowshera. The decision to introduce exotic zinc-enriched maize germplasm in Pakistan, in collaboration with CIMMYT, Mexico, came from the findings of a related research work—evaluation of diverse indigenous maize germplasm; however, none of the entry qualified for suggested biofortification standard, i.e., 33 mg/kg zinc. Introducing exotic material depends upon its yield stability in the new environment. Therefore, stability analysis is mandatory. Using genotype and genotype into environment (GGE) biplot analysis found the GEI (genotype × environment interaction). Exotic hybrids G16, G4, and G1 performed superior and stable in test environments for studied traits, especially for average grain yield per plant and grain zinc content. These three hybrids gained strong\ recommendations for introduction in Pakistan.
Key findings: All tested environments differently influenced NGPR, ASI, and GY forming three mega-environments. Exotic zinc biofortified hybrids G16, G4, and G1 were stable and best performing for studied traits, especially average grain yield per plant and grain zinc content across locations. Abbreviations: PH: plant height (cm), EH: ear height (cm), DT: days to tasseling, DS: days to silking, ASI: anthesis silking interval, EL: Ear length (cm), NRPC: number of rows per cob, NGPR: number of grains per rows, GY: average grain yield per plant (g), TGW: thousand grain weight (g), Zn: grain zinc content (mg/kg), and FW: Field weight (g). PC= Principal Component, ZmZIP = Zea mays Zinc regulated transporter, iron regulated transporter-like protein, ZmNAS5 = Zea mays Nicotianamine Synthase, and CIMMYT: International Maize and Wheat Improvement Center.
S.H.A. AL-HADEDY, S.A. BASHEER, M.S. IDREES, and K.A.Y. Al-TAEE
Citation: Al-Hadedy SHA, Basheer SA, Idrees MS, Al-Taee KAY (2024). Sulfuric acid and hot water treatment effects on the seed germination and growth traits of Sesbania punicea L.. SABRAO J. Breed. Genet. 56(1): 444-452 http://doi.org/10.54910/sabrao2024.56.1.40.
Summary
Like many species within the Fabaceae family, Sesbania punicea L. seeds experience seed coat dormancy, affecting their germination from a hard shell coating the seed, preventing water absorption and gaseous exchange into the seeds. The presented research sought to overcome the outer dormancy phase in Sesbania punicea seeds by treating them with two concentrations of sulfuric acid (50% and 98% H2SO4) for periods of 0, 10, and 15 minutes and soaking in hot water (without, with) for 24 hours. The results revealed that seed pretreatment of immersion in sulfuric acid at a 98% concentration was significantly superior to the 50% and showed the highest mean values for the studied parameters, germination percentage, seedling height, stem diameter, leaves per seedling, and shoots dry weight at 78.33%, 61.61 cm, 5.79 mm, 31.27 leaves/seedling, and 7.32 g, respectively. In the same line, the immersion in sulfuric acid for 15 minutes was superior compared with 10 minutes, providing the highest values for the same traits at 87.04%, 64.08 cm, 6.16 mm, 32.08 leaves/seedling, and 8.12 g, respectively. The hot water treatment was notably dominant to the one without soaking and exhibited the maximum values for the above traits (78.55%, 59.83 cm, 5.94 mm, 31.05 leaves/seedlings, and 7.32 g, respectively). The interaction effects of three factors (immersion in 98% sulfuric acid for 15 minutes and soaking in hot water) excelled other treatments for the traits, i.e., germination rate (99.30%), seedling height (71.00 cm), main stem diameter (7.28 mm), leaves/seedling (36.66), and shoot’s dry weight (11.42 g). The most remarkable achievement was that chemical scarification using sulfuric acid and hot water, either individually or in combination, proved effective in breaking the seed dormancy of Sesbania punicea.
For better germination and early growth of Sesbania punicea L. seedlings, the combination of seed immersion in 98% sulfuric acid for 15 minutes and soaking in hot water for 24 hours proved recommendable since it leads to an increase in the germination percentage from 36.9% to 99.3%, enhancing the growth parameters.
Citation: Mahdi MAHS, Al-Shamerry MMG, Taha AH, Alwan MH, Al-Khaykanee AH, Khashan AAA (2024). Micronutrients and planting time effects on maize growth, fertility, and yield-related traits under heat stress conditions. SABRAO J. Breed. Genet. 56(1): 433-443. http://doi.org/10.54910/sabrao2024.56.1.39.
Summary
The recent study pursued determining the ideal quantity of micronutrients and planting time to enhance maize (Zea mays L.) pollen fertility and production under heat-stress conditions. The study set up a maize experiment in a randomized complete block design (RCBD) with split-plot arrangement and three replications, carried out in the crop season 2020 at the Babylon Muradia Research Center, Iraq. The trials comprised two factors: first, planting times placed in main plots, i.e., June 25 (A1), July 10 (A2), and July 25 (A3), and the second included foliar applications of a composition of six microelements (iron, manganese, zinc, boron, copper, and molybdenum) with four concentrations, i.e., 0 (C0), 20 (C1), 30 (C2), and 40 (C3) g L-1. The results indicated that maize planting at later dates, specifically between July 10 and 25, resulted in the maximum levels of moisture, pollen vitality, and fertility percentage, which led to an increase in yield components and grain output. The findings also demonstrated that foliar application of micronutrients effectively creates a conducive environment for developing pollen grains. The micronutrient concentration of 40 g L-1 gave the optimal moisture and vitality of the pollen grains, leading to the highest quantity of grains per row and, ultimately, maximizing the maize yield. The July 10 planting date proved the ideal time for seeding maize because it contributed to reducing temperatures’ effects and increasing productivity. In addition, foliar application of micronutrients (40 g L-1) creates an optimal environment for pollen grains, improving grain composition and yield. With the pollen grain’s better vitality, the favorable situation improves pollination and fertilization, eventually increasing the maize yield.
Maize (Zea mays L.) planting time between July 10 and 25, along with foliar application of micronutrients (40 g L-1), optimized and promoted pollen grains’ moisture, growth, vitality, and fertility percentage, which eventually boosted the yield traits’ components and grain yield.
A.S. AL-YASSSIRY, H.K.A. ALJENABY, I.H. AL-MASOODY, and N. AL-IBRAHEMI
Citation: Al-Yasssiry AS, Aljenaby HKA, Al-Masoody IH, Al-Ibrahemi N (2024). Biofertilizers effects on the active compounds of sweet basil (Ocimum basilicum L.). SABRAO J. Breed. Genet. 56(1): 425-432. http://doi.org/10.54910/sabrao2024.56.1.38.
Summary
The progressive study aimed to determine the effects of biofertilizers (Azotobacter and Pseudomonas) on active chemical compounds of sweet basil (Ocimum basilicum L.), carried out in 2023 at the Afghan City, Kerbala, Iraq. The experiment set out in a randomized complete block design (RCBD) with a factorial arrangement and three replications. The study comprised two factors: the first was Azotobacter (control, 50, 100, 150 g/bacteria), and the second factor was Pseudomonas (control, 50, 100, 150 g/bacteria). Both biofertilizers attained mixing with seeds before planting. Results revealed significant differences among the various concentrations of Azotobacter and Pseudomonas and their interactions. Azotobacter and Pseudomonas treatment with same dilution (150 g bacteria-1) provided the highest mean values for active chemical compounds in the essential oil, i.e., camphor (3.70 and 4.56 mg g-1), linalool (24.83 and 24.90 mg g-1), pinene (1.09 and 1.38 mg g-1), myrcene (13.64 and 12.84 mg g-1), and limonene (18.16 and 17.76 mg g-1), respectively.
Sweet basil (Ocimum basilicum L.), Pseudomonas, Azotobacter, active compounds
Biofertilizers (Azotobacter and Pseudomonas) and their interactions enunciated considerable differences for active chemical compounds. Azotobacter and Pseudomonas with same concentration (150 g/bacteria) produced the highest mean values in the essential of sweet basil (Ocimum basilicum L.) for camphor (3.70 and 4.56 mg g-1), linalool (24.83 and 24.90 mg g-1), pinene (1.09 and 1.38 mg g-1), myrcene (13.64 and 12.84 mg g-1), and limonene (18.16 and 17.76 mg g-1), respectively.
Citation: Hamza Sh.M (2024). Kinetin effects on the physiological traits of spearmint (Mentha spicata L.) using foliar and seed soaking approaches under salinity stress conditions. SABRAO J. Breed. Genet. 56(1): 412-424. http://doi.org/10.54910/sabrao2024.56.1.37.
Summary
Spearmint (Mentha spicata L.) has several known names, such as garden mint, common mint, lamb mint, and mackerel mint. Salinity is considerably one of the most vital causes negatively affecting plant life, reducing productivity. Kinetin, a cytokinin-like synthetic plant hormone, can promote plant growth against salinity. The potential research sought to study seeds soaking and foliar application of kinetin to mitigate harmful salinity effects, which cause chemo-physiological variations in spearmint due to increased salinity in the irrigation water. In the experiment, two salt concentrations (2.3 dS m-1 and 6.2 dS m-1) helped develop the salinity environment, with kinetin (5 mg/L) used for seeds’ soaking for four hours and as an exogenous treatment by foliar spraying of the spearmint seedlings. The results revealed an increased electron leakage percentage (ELP) related to a rise in salinity elements (Na+ and Cl–) at 6.2 dS m-1 in both groups with reducing K+ levels. Likewise, a reduction was prominent in salinity elements with an enhancement in K+ level with foliar application than the seeds soaked with kinetin. Increased proline content, H2O2, MDA, and an increase in antioxidant activity of CAT and SOD were evident in salinity treatment, which declined by treating with kinetin (5 mg L-1) foliar application. The results proved that kinetin foliar spraying is the best in supporting Mentha spicata L. plant versus kinetin seeds soaking against the adverse effects of salinity.
Using kinetin with foliar spray was superior to soaking seeds with it to promote Mentha spicata L. plants for reducing salt elements Na+, Cl–, MDA, ELP, and proline content with increased K+ content and antioxidant active.
Citation: Hussein HT, Radhi IM, Hasan MM (2024). Role of abscisic acid and potassium in broad bean growth under water stress conditions. SABRAO J. Breed. Genet. 56(1): 399-411. http://doi.org/10.54910/sabrao2024.56.1.36.
Summary
The experiment happened at Al-Mussaib Technical College, Al-Furat Al-Awsat Technical University, to know the effect of ABA acid and potassium on the growth of broad bean (Vicia faba L) plants under water stress conditions (0 and 1000 mg k-1) while the third factor was an ABA acid at the concentration of 0.2 mM. The results were as follows: All studied traits decreased under conditions of water stress (plant height, leaf number, leaf area, total soluble carbohydrates [TSC], activity of superoxide dismutase [SOD], and catalase of broad beans) with recorded values of 41 cm, 5.67 leaf plant-1, 60.57 cm2, 11.82 (mg g-1 DW), 155.01 units mg-1 protein min-1, and 138.59 mg-1 protein min-1, respectively. The obtained triple interaction treatment was also at 25 ds m-1 + 1000 mg l-1 + 0 ABA, giving the highest values for all studied traits. ABA and potassium apart and together boosted proline, TSC, SOD, and CAT, raising plant height, leaf number, and area. The combined treatment improved plant growth and antioxidant systems, reducing the suppressive effect of water deprivation. ABA and potassium-treated plants showed greater TSC.
The results revealed applying ABA, potassium, and their interaction improved all growth traits by increasing proline content, total soluble carbohydrates, CAT, and SOD. The findings of this study indicated that ABA and potassium together assisted the plant in regaining the altered physiological features caused by water stress.
Citation: Marhoon IA (2024). Nanofertilizer impact on growth, seed yield, and essential oil of black cumin (Nigella sativa L.). SABRAO J. Breed. Genet. 56(1): 392-398. http://doi.org/10.54910/sabrao2024.56.1.35.
Summary
The present-day study investigated the effect of different nanofertilizer concentrations on growth and seed yield-related traits and the percentage of essential oil in the seeds of the black cumin (Nigella sativa L.), carried out during the crop season of 2019–2020 at the University of Al-Qadisiyah, Al-Diwaniyah, Iraq. The experiment was in a randomized complete block design (RCBD) with three replications. The nanofertilizer at a 20 mg/L concentration has a significant impact on the black cumin (N. sativa L.) plants and improved the growth, seed yield, and biochemical traits, i.e., plant height (40.38 cm), 1000-seed weight (3.48 g), seed yield per plant (5.55 g), seed essential oil (0.42%), percentage of mineral elements (Nitrogen-5.48%, potassium-1.02%, and zinc-4.00%), and biochemical compounds in the leaves (carbohydrates-4.34%, protein-6.00%, and peroxidase-0.95) compared with the least values for the said traits in the control treatments, i.e., 33.92 cm, 1.65 g, 3.77 g, 0.13%, 3.02%, 0.28%, 2.23%, 2.76%, 4.05%, and 0.23, respectively. However, nanofertilizer levels had nonsignificant effects on the number of branches, leaves, and capsules per plant and the percentage of phosphorus and abscisic acid. Therefore, nanotechnology has established itself as a multidisciplinary and pioneering problem-solving technology in agricultural and allied sciences.
Black cumin (N. sativa L.), nanofertilizer, growth and seed-yield traits, essential oil, macro-elements, carbohydrates, abscisic acid (ABA), proteins
The nanofertilizer (20 mg/L) has significantly impacted the black cumin (Nigella sativa L.) plants and improved the growth and yield-related traits, percentage of mineral elements, and biochemical traits in the leaves.