Journal

Category Archive Journal

Characterization of bread wheat segregating populations under optimum irrigation and water stress conditions

D.A. SWELAM, A.H. SALEM, M.A. HASSAN, and M.M.A. ALI

SUMMARY

Water scarcity is currently threatening almost every country in the arid regions. Using advanced generations, breeding can help in the development of improved bread wheat genotypes for adaptation to abiotic and biotic stresses. The pedigree selection was practiced on two bread wheat crosses (Sids 12 × Line 44) and (Line 20 × Sakha 93) during two seasons (2017−2018 and 2018–2019) under full irrigation (optimal conditions) and limited irrigation (drought-stressed) conditions at Kafer El-Hamam Agriculture Station, Agricultural Research Center, Giza, Egypt. The results indicated significant differences in two crosses of F2 and F3 families for all the studied traits under optimal irrigation and water stress. The estimates of phenotypic coefficients of variability (PCV) were slightly higher than those of genotypic coefficients of variability (GCV) for all the traits in two crosses of both water regimes. Broad-sense heritability (h2 Bs) estimates, accompanied with high magnitudes of the genetic advance (GA), were higher under optimal irrigation than water stress in F2 and F3 generations of two crosses. A positive correlation was recorded between spikes per plant and grain yield in both water treatments of two crosses. A positive correlation (r) was revealed between offsprings (F3) and their parents (F2) in yield and its components under optimal irrigation and water stress conditions. Hence, the hybridization followed by selection under optimal and drought stress conditions have been a demand to accelerate the genetic gain of wheat grain yield.

 

Download the article

Date Published: June 2022

Keywords: Wheat, selection parameters, heritability, genetic advance, water stress

DOI: http://doi.org/10.54910/sabrao2022.54.2.6

Tags

In vitro mutagenesis and propagation of Paulownia tomentosa (Thumb) for salt tolerance

M.E.A.E. AHMED, T.M. ABD ELAZIEM, and A.A. NOWER

SUMMARY

The study aimed to refine a protocol for micropropagation and to develop the plant’s ability to withstand salinity by the use of physical and chemical mutations, so that it can be cultivated in new lands that are not suitable for other crops. Shoot tips and stem segments of Paulownia tomentosa were firstly sterilized and cultured on different media types containing benzyl amino purine (BAP) at 0, 0.1, 0.25, 0.5, and 1.0 mg/l to choose the best combination for explant growth and proliferation. To examine the plant’s ability to withstand salinity, Paulownia tomentosa shoots were first irradiated with the doses of gamma rays at 0.0, 30, 60, 90, 120, and 150 Gray (Gy) and secondly, cultured on a WPM medium containing sodium azide “NaN3” at 0.0, 0.1, 0.2, 0.4, 0.8. and 1.0 mM for 5 min. Both irradiated and NaN3-treated shoots were cultured on different levels of NaCl. Inter Simple Sequence Repeats (ISSR) technique was used to detect variations caused by gamma rays and NaN3. Results showed that at 120 Gy of gamma-ray, one fragment with primer UBC824 vanished and one fragment with primer 17898B at 150 Gy appeared. In comparison, one fragment with primer either UBC873 or UBC867 at 1.0 mM and 0.8 mM of NaN3, respectively, can be considered a positive marker of Paulownia salt tolerance. Treated shoots gave the greatest number of roots/shoot (6.0) on WPM half strength with NAA at 2.0 mg/l. Increasing gamma doses or NaN3 concentrations decreased survival rate. Variation created by mutation provides the raw material for natural selection and is a driving force in evolution. Keywords: Gamma-ray, mutagenesis, NaN3, Paulownia tomentosa, proliferation, salt tolerance, tissue culture Key findings: At 120 Gy of gamma-ray, one fragment with primer UBC824 vanished and one fragment with primer 17898B at 150 Gy appeared. In comparison, one fragment with primer either UBC873 or UBC867 at 1.0 mM and 0.8 mM of NaN3, respectively, and one fragment with primer UBC828 at 0.8 mM of NaN3 appeared, which can be considered as a positive marker of Paulownia linked to salt tolerance.

Download the article

Date Published: June 2022

Keywords: Gamma-ray, mutagenesis, NaN3, Paulownia tomentosa, proliferation, salt tolerance, tissue culture

DOI: http://doi.org/10.54910/sabrao2022.54.2.8

Phenotypic variability in cowpea (Vigna unguiculate L. Walp) genotypes assessed with quantitative and qualitative characters

Onwubiko NC

Phenotypic variation among six Nigerian cowpea genotypes was established on the basis of quantitative and qualitative characters. Except for leaf area and harvest index, quantitative characters showed significant differences. Stem and pod color and leaf and seed color showed variation among genotypes. Seed size had the least variation. Quantitative and qualitative characters were useful for assessing morphological variability and discriminating cowpea accessions.

Download article

Onwubiko NC (2020). Phenotypic variability in cowpea (Vigna unguiculate L. Walp) genotypes assessed with quantitative and qualitative characters. SABRAO J Breed Genet 52(2):191–201.

Genetic Diversity of Cucumis and Mukia (Cucurbitaceae) based on ISSR markers

Pratami MP, Chikmawati T, Rugayah

Published: June 2020

A total of 53 Cucumis cultivars and 43 Mukia accessions were verified through genetic diversity analysis based on inter simple sequence repeat markers. The amplification of Cucumis and Mukia DNA by using 20 ISSR primers produced 246 bands and 245 polymorphic bands. Mukia javanica (Miq.) C. Jeffrey (0.101) showed the highest diversity, whereas Mukia maderaspatana L. (0.037) showed the lowest diversity. Principal component analysis grouped Cucumis and Mukia accessions into four groups.

Download article

Pratami MP, Chikmawati T, Rugayah (2020) Genetic diversity of Cucumis and Mukia (Cucurbitaceae) based on ISSR markers. SABRAO J Breed Genet 52(2):127–143.

Molecular phylogeny of Nibung (Oncosperma tigillarium [Jack] Ridl.) inferred from trnL-F intergenic spacer sequences

FITMAWATI, DESTI, E. JULIANTARI, D. NOVELA, and H. KAPLI

SUMMARY

Nibung (Oncosperma tigillarium [Jack] Ridl.) has a stronger wood quality and is resistant to tidal deformations. For centuries, the local people are traditionally using nibung for different purposes. However, its utilization is higher than its cultivation, causing a decrease in supply every year. Taxonomic data based on molecular markers are urgently needed in the nibung germplasm. We need to study their molecular characters to provide basic data for genetic diversity and conservation study purposes. The present study aims to analyze the phylogenetic relationship of seven accessions of nibung in Riau, Sumatra, Indonesia, based on molecular characters and to clarify the relationship among closely related infra-specific categories. The seven accessions of nibung were grouped by types of habitats i.e., lowland and highland areas. Accessions collected from the highland areas (Bukit Suligi) were very different from those collected from the lowland areas based on their genetic and evolutionary data. Based on Neighbor-Joining (NJ) analysis, it is estimated that the accession O. tigillarium from Bukit Suligi was more advanced than another accession. The present study has been able to compare more primitive and advanced accessions based on genetic distance. The studies also confirmed that the more advanced species are highly capable to survive in their in situ environment. Such type of genetic variability is very important for breeding and conservation studies and can be used in future generations of palm.

Download the article

Keywords: DNA barcoding, trnL-F intergenic spacer, nibung (Oncosperma tigillarium), Riau – Indonesia

DOI: http://doi.org/10.54910/sabrao2022.54.1.16

Effect of zeolite on the micro-morphological and biochemical features of the spring rapeseed (Brassica napus L.)

T.V. ZUBKOVA, D.V. VINOGRADOV and O.A. DUBROVINA

SUMMARY

The study aimed to assess the effect of a natural mineral fertilizer – zeolite on the micromorphological and biochemical characteristics of the spring rapeseed Brassica napus L. cv. “Rif”). Experiments were held at the Federal Research Center for Breeding, Agro-technics and Nursery Horticulture, Moscow, and Agro-industrial Institute, Bunin Yelets State University, Yelets, Russia from 2018 to 2020. The study scheme comprises four treatments as follows: a. control (no fertilizer), b. NPK @ 60-60-60 kg ha-1, c. Zeolite 5 t ha-1, and d. NPK @ 60-60-60 kg ha-1 + Zeolite 5 t ha-1. Results revealed that the maximum number of stomata was observed in the rapeseed crop treated with natural and mineral fertilizer – zeolite. On average, there were 537 pcs/mm2 on the adaxial surface, and 480 pcs/mm2 on the abaxial leaf surfaces. The mineral fertilizer application only, and in combination with a natural ameliorant, contributed an increase in photosynthetic pigments, which was about 22% more relative to the control. To determine the content of trace elements (Mn, Fe, Zn, and Ni) according to the phases of spring rapeseed development, the trace elements were decreased by the harvesting phase. The only exception was Co, where content was increased by the time of rapeseed ripening. The accumulation of the studied trace elements in spring rapeseed plants at maturity can be represented by the following decreasing series, Fe>Mn>Zn>Cu>Ni>Co. The correlation coefficients also revealed that there was a strong relationship among all the studied elements. A high correlation (r = 0.95) was found between the seed yield and the magnitude of the photosynthetic pigments.

Download the article

Keywords: Spring rapeseed, natural mineral fertilizer (zeolite), micromorphology, mineral composition, photosynthetic pigments, seed yield

DOI: http://doi.org/10.54910/sabrao2022.54.1.14

Assessment of sugar beet genetic diversity in the Republic of Kazakhstan by using RAPD markers and agromorphological traits

A.M. ABEKOVA, R.S. YERZHEBAYEVA, S.O. BASTAUBAYEVA, K. KONUSBEKOV, T.A BAZYLOVA., D.I. BABISSEKOVA, and A.A. AMANGELDIYEVA

SUMMARY

Sugar beet is a highly valuable and profitable crop in the Republic of Kazakhstan. It is the only source of raw materials for the production of crystalline sugar and incidentals (tops, bagasse, and molasses). This study aimed to determine the genetic diversity of 53 sugar beet samples, 19 parental lines, and 34 hybrids from Kazakhstan by using random amplified polymorphic DNA (RAPD) markers, agromorphological traits, root mass weight, and sugar content at the Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Republic of Kazakhstan. The experimental conditions were optimized for the 14 RAPD primers used in this study. The polymorphism index contents varied from 0.24 to 0.46, and all 14 primers were classified as moderately informative. The cluster analysis of RAPD data divided the sugar beet samples into seven groups. The greatest distance (D = 1.4) was noted among the male sterile lines ‘MS-1611’, ‘MS-1631’, ‘MS-97’, and ‘MS-2113’ and the pollinator lines ‘VP-44’ and ‘VP-23’. The samples were divided into six groups on the basis of root mass weight and sugar content via cluster analysis. The hybrids ‘RMS-90’, ‘RMS-134’, ‘RMS-133’, ‘RMS-136’, and ‘Ramnes’ were grouped in a cluster that showed the highest values of root mass weight, which ranged from 610 g to 680 g. However, the samples with high sugar content (18.2–18.5), i.e., ‘Shecker’, ‘2198’, ‘H-22’, and ‘1005’, were grouped into a cluster with a distance of D = 0.8. Lines located at a large genetic distance from each other were recommended for hybridization when creating highly productive hybrids. These findings can be applied in the development of new productive and stable sugar beet hybrids in Kazakhstan.

Download the article

Keywords: Genetic diversity, markers, RAPD, root mass weight, sugar content, sugar beet

DOI: http://doi.org/10.54910/sabrao2022.54.1.7

Tags,

Physiological and molecular response of cotton (Gossypium hirsutum L.) to heat stress at the seedling stage

M. SAJID, M.A.B. SADDIQUE, M.H.N. TAHIR, A. MATLOOB, Z. ALI, F. AHMAD, Q. SHAKIL, Z.U. NISA, and M. KIFAYAT

SUMMARY

The ideal temperature range for the optimal growth and development of cotton is 25 °C–32 °C and high temperature adversely affects the metabolic activities of plant cells. This study was aimed to screen heat-tolerant cotton genotypes based on physiological and molecular parameters. Experiments were carried out during 2019–2020 at the MNS-University of Agriculture, Multan, Pakistan. The research comprised two parts. In the first experiment, 30 cotton genotypes were sown in a completely randomized design with three replications under laboratory conditions for the determination of cell membrane thermostability. Principal component analysis was performed, and four genotypes, i.e., two heat-tolerant (‘CRIS-5A’ and ‘VH-338’) and two heat-sensitive (‘FH-242’ and ‘VH-281’) genotypes, were selected. In the second experiment, the screened cotton genotypes were sown in pots in a factorial complete randomized design with three replications and two treatments (normal and heat treatment). Heat stress was applied at the seedling stage, and eight leaf samples (one from each experimental unit) were collected. Two genes were used for molecular analysis and were amplified in all eight cDNA samples. Molecular analysis indicated the presence of HSP70 and HSP26 genes in the cotton genotypes, and the expression of these genes was measured by using ImageJ software. The gene expression level of HSP70 was very high (16.41%) in ‘VH-281’, which is a heat-sensitive genotype under heat stress. The sensitive genotype ‘FH-242’ exhibited the highest gene expression level of HSP26 (20.32%) under normal conditions. A similar sequence of HSP70 gene of Agave sisalana was amplified for the first time in cotton. It is a good indicator for screening heat tolerant cotton genotypes at the molecular level.

Download the article

Keywords: CMT, cotton, screening, heat shock proteins, high temperature, RCI%, oxidative damage 

DOI: http://doi.org/10.54910/sabrao2022.54.1.5

Combining ability and heterosis in Sorghum (Sorghum bicolor L.)

MAFTUCHAH, H. WIDYANINGRUM1, A. ZAINUDIN1, SULISTYAWATI, H.A. RESWARI, and H. SULISTIYANTO

SUMMARY

For the sustainable improvement of sorghum (Sorghum bicolor L.), local genotypes were conventionally crossed in East Java, Indonesia to determine a) the crossing success of different genotypes, b) germination percentage and seed setting traits, and c) the combining ability and heterotic effect of sorghum parental genotypes and their F1 diallel hybrids. Three sorghum genotypes (‘Lamongan-1’, ‘Tulungagung-2’, and ‘Jombang’) from the local germplasm were collected from various regions in East Java, Indonesia, and were crossed in a complete diallel design. The experiment was carried out in a randomized complete block design with four replications during 2018–2019 at the Agrotechnology Laboratory, Faculty of Agriculture, University of Muhammadiyah, Malang, Indonesia. Results showed that the parental genotypes and their F1 hybrids exhibited significant differences in seed weight and seed diameter and nonsignificant differences in germination percentage and seed setting. The parental genotype ‘Tulungagung-2’ and its hybrids ‘Jombang’ × ‘Tulungagung-2’, ‘Tulungagung-2’ × ‘Lamongan-1’, and ‘Jombang’ × ‘Tulungagung-2’ presented the highest germination percentages, seed setting, seed weights, and seed diameters. The genotype ‘Tulungagung-2’ had the highest general combining ability and was identified as a good general paternal and maternal parent for the production of promising F1 hybrids. The hybrid ‘Jombang’ × ‘Lamongan-1’ had the highest specific combining ability for all of the characters and was recognized as a promising F1 hybrid for improving sorghum yield. Cluster analysis divided all of the parental genotypes and their F1 hybrids into two large groups with a similarity of 13.13%.

Download the article

Keywords: Conventional breeding, parental genotypes, F1 diallel hybrids, crossing success, germination percentage, heterosis, heterobeltiosis, combining ability

DOI: http://doi.org/10.54910/sabrao2022.54.1.4

Tags

Genetic variability and inheritance pattern of yield components through diallel analysis in spring wheat

D.E. QULMAMATOVA, S.K. BABOEV and A.K. BURONOV

SUMMARY

Wheat is the third most important staple crop in the world, hence, its sustainable production remained the primary focus due to increasing global consumption. This study aims to determine the genetic potential of spring soft wheat (Triticum aestivum L.) F2 populations for yield traits. Six wheat genotypes were used for diallel reciprocal crossing and a total of 12 hybrids in comparison to parental genotypes were studied from 2015 to 2018 at the Institute of Genetics and Plant Experimental Biology, Academy of Sciences, Tashkent, Uzbekistan. In parental genotypes, the average spikelets per spike were similar, however, the highest index per spike was recorded in cultivars Bardosh (56.8±1.02), Unumli Bugdoy (57.9±1.05), and Sayhun(56.3±0.79). The F2 populations were recorded with the highest number of spikelets per spike and shifted to the right side by 2-3 classes compared to the parental genotypes. The appearance of right-sided regression and identified genotypes with higher 1000-grain weight was observed in the populations of cultivar Bardosh. Populations with higher indices (3.5 to 4.4) than parental genotypes were observed in the cross Bardosh × Unumli Bugdoy (21.7%). The range of variability for 1000-grain weight in the cultivars Kroshka and Bardosh belonged to 2nd class, and cultivars Kayraktash, Unumli Bugdoy, Saykhun, and K-5076 belonged to 3rd class. Populations with 1000-grain weight ranged from 44.0 g to 47.9 g, with a percentage estimate of 63.3% for cultivar Kroshka, and 76.7% for Kayroktosh. In the second generation, the variability range was distributed into eight classes. Larger grains were observed in the hybrids of cultivar Kayroktash. Hybridological analysis of the inheritance of quantitative traits exhibited that the grains per spike were mainly inherited according to the type of dominance of the best parent with a high trait index. The grain number and grain weight per spike were inherited by overdominance type of gene action in the characterized F1 populations.

Download the article

Keywords: Bread wheat, quantitative traits, yield, transgressive variability, reciprocal combination

http://doi.org/10.54910/sabrao2022.54.1.3

Tags,