Journal

Category Archive Journal

AGRO-PHYSIOLOGICAL AND GENETIC CHARACTERIZATION OF HALOPHYTE SPECIES AND THEIR IMPACT ON SALT-AFFECTED SOIL

G.M. SAMAHA, L.M. SAYED, and M.M. TAWFIK

Citation: Samaha GM, Sayed LM, Tawfik MM (2024). Agro-physiological and genetic characterization of halophyte species and their impact on salt-affected soil. SABRAO J. Breed. Genet. 56(1): 76-88. http://doi.org/10.54910/sabrao2024.56.1.7.

Summary

The adverse effects of climate change and heightened soil salinity on agricultural production are definite. Halophytes serve to remove salts from soil effectively and economically. Consequently, the presented work has evaluated the impact of three halophytic species on salt-affected soil. The study used inter simple sequence repeats (ISSRs) and start codon targeted (SCoT) markers to examine the genetic variations. Field experiments progressed on salt-affected soils around Qarun Lake’s coastal region for two consecutive seasons (2019 and 2020). The soil and plants underwent analysis using established methodologies. The findings indicated that after the fifth cutting for the three halophytic species, there was a drop in salinity indices, implying an improvement in soil quality assessments. On the other hand, six ISSR and 10 SCoT primers amplified 96 and 190 bands with 84.14% and 88.29% polymorphism, respectively. Additionally, they demonstrated numerous positive and negative markers linked to some phenotypic traits. Polymorphic information content (PIC) values were 0.51 (ISSRs) and 0.48 (SCoT), indicating that these markers were moderately informative. Heterozygosity index (He) values were 0.59 (ISSRs) and 0.57 (SCoT), implying a substantial degree of genetic diversity present within the studied species.

Halophytic species, forage production, bioethanol, remediation, ISSR, SCoT

Leptochloa fusca was more effective in salinity remediation, having the highest productivity and protein content (CP), hence, considered a good source for forage production. Meanwhile, Sporobolus virginicus (Smyrna) produced the utmost lignocellulosic biomass, making it a potential candidate for bioethanol production in the future. Overall, the ISSR and SCoT markers generated reliable banding patterns to evaluate the genetic variation among halophytic species.

Download this article

SABRAO Journal of Breeding and Genetics
56 (1) 76-88, 2024
http://doi.org/10.54910/sabrao2024.56.1.7
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2024

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 56 No. 1

GENE ACTION AND HERITABILITY ESTIMATES IN F2 POPULATIONS OF FOXTAIL MILLET (SETARIA ITALICA L.)

P.N. MUZZAYYANAH, W.B. SUWARNO, and S.W. ARDIE

Citation: Muzzayyanah PN, Suwarno WB, Ardie SW (2024). Gene action and heritability estimates in F2 populations of Foxtail millet (Setaria italica L.). SABRAO J. Breed. Genet. 56(1): 65-75. http://doi.org/10.54910/sabrao2024.56.1.6.

Summary

From a nutritional and health point of view, Foxtail millet (Setaria italica [L.] P. Beauv.) is one of the valuable millets due to its adaptability to adverse environmental conditions and ideal characteristics for functional genomics studies. Despite the increased number of studies on foxtail millet globally, however, presently in Indonesia, it is an underutilized crop species. Through conventional hybridization, combining superior traits has been conducted to produce high-yielding cultivars with early maturity and medium plant stature in foxtail millet. The pertinent study aimed to elucidate the genetic diversity in F2 populations derived from the cross of Botok-10 × ICERI-5 and approximate the broad-sense heritability and gene actions controlling various traits in foxtail millet. The study’s genetic material used 352 F2 populations from the crossing of two potential parental genotypes of the foxtail millet: Botok-10 and ICERI-5. The results enunciated several individual F2 populations with medium plant stature and earlier heading time compared with the parental genotypes. These potential F2 segregants were also higher yielders than the male parent (ICERI-5). Non-additive gene action controlled the inheritance of the three targeted traits, i.e., plant height, heading time, and grain weight per plant in the foxtail millet. The heading time and grain weight per plant traits showed the highest genetic coefficient of variation (GCV) and moderate broad-sense heritability, and the plant height showed moderate GCV and low broad-sense heritability in the foxtail millet. All observed traits, except stem diameter, showed a significant positive correlation with grain weight per plant. The selection differential values indicated that the selected individuals have faster heading time and higher grain weight per plant than the overall F2 populations.

Foxtail millet (Setaria italica L.), broad-sense heritability, gene action, kurtosis, skewness, underutilized crops

The promising F2 segregants derived from the cross, Botok-10 × ICERI-5, met the breeding objectives like medium plant stature, early heading, and high productivity in foxtail millet. All the vital traits were under the control of a non-additive gene action. The heading time and grain weight per plant showed the highest GCV and moderate heritability, and the plant height showed moderate GCV and low heritability.

Download this article

SABRAO Journal of Breeding and Genetics
56 (1) 65-75, 2024
http://doi.org/10.54910/sabrao2024.56.1.6
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2024

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 56 No. 1

HAYMAN’S DIALLEL ANALYSIS FOR PHYSIOLOGICAL TRAITS IN CHILI (CAPSICUM ANNUUM L.) SEEDS

UNDANG, M. SYUKUR, Y. WAHYU, and A. QADIR

Citation: Undang, Syukur M, Wahyu Y, Qadir A (2024). Hayman’s diallel analysis for physiological traits in chili (Capsicum annuum L.) seeds. SABRAO J. Breed. Genet. 56(1): 54-64. http://doi.org/10.54910/sabrao2024.56.1.5.

Summary

Genetic parameters’ estimation using Hayman’s diallel approach commenced in 2023 on chili (Capsicum annuum L.) F1 hybrid populations developed through the Hardy-Weinberg equilibrium. The prevailing study aimed to acquire information about various genetic parameters and gene action that control the chili seeds’ viability using Hayman’s diallel analysis approach. The results revealed that all observed variables had the additive gene action managing them. The distribution of genes in the parental genotypes for the probed traits was uneven, with all features controlled by 1–2 genes. The heritability values in broad sense (79.05–96.23) and narrow sense (72.99–84.81) were high on most chili traits. The present information is suitable for determining the direction of cultivars for production in subsequent breeding activities. Information about the genetic parameters can benefit a considerable basis in future breeding programs, especially seed viability in chili.

Additive and dominance effects, genes, genetic parameters, heritability, seed viability

The results revealed that an additive gene action controlled all the variables. The broad sense heritability (h2bs) values were high for all the traits, while the narrow meaning heritability (h2ns) values were elevated only for some.

Download this article

SABRAO Journal of Breeding and Genetics
56 (1) 54-64, 2024
http://doi.org/10.54910/sabrao2024.56.1.5
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2024

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 56 No. 1

BIOLOGICAL PRODUCTS SWAY THE YIELD AND QUALITY TRAITS OF CHICKPEA (CICER ARIETINUM L.) IN A CONTINENTAL CLIMATE

A. ANSABAYEVA and A. AKHMETBEKOVA

Citation: Ansabayeva A, Akhmetbekova A (2024). Biological products sway the yield and quality traits of chickpea (Cicer arietinum L.) in a continental climate. SABRAO J. Breed. Genet. 56(1): 45-53. http://doi.org/10.54910/sabrao2024.56.1.4.

Summary

An increased intensity of agricultural mineral fertilizers’ use to raise crop yields has disrupted the soil’s natural balance. Researchers worldwide continually analyze biological factors in farming systems as a transitional stage to organic farming to increase soil fertility. The presented study pursued evaluating the effect of organic products on the yield and quality indicators of chickpeas in the continental climate of the Kostanay Region, Republic of Kazakhstan. In this study, the chickpea (Cicer arietinum L.) cultivar Yubileinyi, sown with four variants, used various biological preparations and a control (pure sowing). The plant samples’ analysis ensued in the laboratory of the State Institution Republican Scientific and Methodological Center of Agrochemical Service, with the field experiments established in the Zarechnoye Agricultural Experimental Station Limited Liability Partnership. The object of the study was the cultivar. During the probe period, the experimental site climate had a continental characteristic, meteorological conditions were arid, and the hydrothermal coefficient was 1.0. Based on various experiment variants and the biological preparations, chickpea grain yield ranged from 8,740 to 13,699 kg ha-1 compared with the control treatment (7,980 kg ha-1). The chickpea’s quality indicators also showed improvements, and the grains harvested from one hectare contained 245.6 kg of protein and 62.4 kg of carbohydrates. The significant yield improvement in chickpeas was due to increased organic active substances in the different preparations used during the study.

Chickpea (Cicer arietinum L.), biological nitrogen, nodule bacteria, biological preparations, grain yield, biochemical traits, quality traits

The biological preparations, viz., Baikal EM-1 and Rizovit AKS, compared with the mineral fertilizer (double superphosphate), significantly enhanced the growth and yield traits of the chickpea crop.

Download this article

SABRAO Journal of Breeding and Genetics
56 (1) 45-53, 2024
http://doi.org/10.54910/sabrao2024.56.1.4
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2024

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 56 No. 1

INTRODUCTION OF CRISPR/Cas9 WITH THE TARGET GENES TO IMPROVE AGRONOMIC TRAITS AND LEAF BLIGHT RESISTANCE IN RICE

F. ROVIQOWATI, SAMANHUDI, T.J. SANTOSO, E. PURWANTO, A. SISHARMINI, A. APRIANA, and A. YUNUS

Citation: Roviqowati F, Samanhudi, Santoso TJ, Purwanto E, Sisharmini A, Apriana A, Yunus A (2024). Introduction of CRISPR/Cas9 with the target genes to improve agronomic traits and leaf blight resistance in rice. SABRAO J. Breed. Genet. 56(1): 29-44. http://doi.org/10.54910/sabrao2024.56.1.3.

Summary

Improving rice (Oryza sativa L.) quality is crucial to obtaining local rice with better genetic potential and superiority. The research aimed to construct a CRISPR/Cas9 module cassette and introduce the construct into rice to develop a new non-transgenic superior Mentik Susu variety with early maturity, short stem, high yield, and resistance to bacterial leaf blight. The annealed oligonucleotides of gRNA spacers of the HD2 gene ligated into pDIRECT-21A vector plasmid used the golden gate reaction to construct a CRISPR/Cas9 module cassette. The recombinant plasmid’s verification by digestion engaged a combination of KpnI-HindIII restriction enzymes and Sanger DNA sequencing. The Agrobacterium-mediated co-transformation procedure introduced the CRISPR/Cas9 cassettes (four module cassettes with different gRNAs of the genes, i.e., GA20ox-2, OsCKX2, OsSWEET11, and HD2) into the rice genome with immature rice embryos as explants. Molecular analysis of the transformed T0 putative lines ensued to identify the insertion of T-DNA fragments (containing the Cas9 and hptII genes) and the occurrence of mutagenesis employing PCR amplification and DNA sequencing. The result showed that the CRISPR/Cas9 cassette vector containing the Cas9 gene and the targeted gRNA construction succeeded. Rice transformations of Mentik Susu have generated 157 T0 putative lines, with several of the lines harboring the Cas9 and hptII genes detected positively. Sanger DNA sequencing analysis demonstrated that eight rice lines had a mutation occurrence in the target genes, i.e., two mutations in the OsGA20ox line, five mutations in the OsSWEET11 lines, and one mutation in the Gn-1a (OsCKX2) line. Based on these results, it is probable that the mutant lines also have a phenotype change that is beneficial to produce promising rice genotypes with early maturing, short stems, high yield, and bacterial leaf blight resistance.

Oryza sativa L., Mentik Susu rice cultivar, genome editing, CRISPR/Cas9, mutagenesis, early maturity, high yield

The presented research has successfully constructed the CRISPR/Cas9-gRNA-HD2 vector cassette and introduced the construct into rice cv. ‘Mentik Susu’ to edit the HD2 gene for developing an early-maturity rice cultivar. Genome editing of the multiple-gene targets (GA20ox-2, OsCKX2, OsSWEET11, and HD2 gene) in rice cv. ‘Mentik Susu’ has resulted in obtaining several rice lines with the CRISPR mutated genes.

Download this article

SABRAO Journal of Breeding and Genetics
56 (1) 29-44, 2024
http://doi.org/10.54910/sabrao2024.56.1.3
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2024

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 56 No. 1

GENETIC AND STABILITY ANALYSES FOR THE SELECTION OF TERMINAL HEAT STRESS TOLERANT WHEAT (Triticum aestivum) GENOTYPES IN BANGLADESH

M.T. ANWAR, T. CHAKI, and G.H.M. SAGOR

Citation: Anwar MT, Chaki T, Sagor GHM (2024). Genetic and stability analyses for the selection of terminal heat stress- tolerant wheat (Triticum aestivum) genotypes in Bangladesh. SABRAO J. Breed. Genet.56 (1) 1-17. http://doi.org/10.54910/sabrao2024.56.1.1.

Summary

The high temperature during crop growing seasons is prevalent in the Indo-Gangetic region, causing heat stress to the plants. Heat stress in wheat is a threat to food security and agricultural sustainability. Finding a heat-stress stable wheat genotype is a timely demand. A field study scrutinized 60 genotypes, designed with five different sowing dates, each with 10-day intervals, to identify the stable one. All the growth parameters showed significant responses to terminal heat stress effects. Wheat yield declined by 20%–57% with the successive heat-stress increases with late sowing dates. Most plant growth parameters had a similar or slight variation in genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV). The higher PCV in pollen sterility, chlorophyll content, and the number of filled grains than GCV indicates environmental influence on the expression of the characters studied. These parameters also showed a direct positive effect on crop yield when analyzed in their path coefficients. Genotype performance in yield incurred heat-stress tolerance index tests and revealed that Sourav, Gourav, SA-8, Chyria 3, CB-47, and Sabia genotypes had suitable tolerance, stress-susceptibility, and high-yield stability indexes, indicating higher yields in stress condition. AMMI analysis also showed a significant variation, and the genotypes SA-8, Chyria 3, Pavan, DSN-117, and Sonalika were the most stable. The most unstable genotypes were SA-2, Kheri, and FYN-PVN. The genotypes SA-8, Chyria 3, Pavan, DSN-117, and Sonalika can benefit further breeding as sources of genetic material to develop heat-tolerant, high-yielding wheat varieties.

Wheat, heat stress, heat tolerance indices, stability model (AMMI), stable genotypes

Heat stress significantly affected all the yield-contributing parameters, causing yield reduction at late sown dates by 20%–57% than the optimum planting date. Yield-contributing parameters which had high heritability also influenced environmentally, among the 60 genotypes of wheat SA-8, Chyria 3, Pavan, DSN-117 and Sonalika showing stable performance under different heat-stress conditions, opposite to the SA-2 genotype. The selected materials can further benefit as source materials to develop heat-tolerant, high-yielding wheat varieties.

Download this article

SABRAO Journal of Breeding and Genetics
56 (1) 1-17, 2024
http://doi.org/10.54910/sabrao2024.56.1.1
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2024

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 56 No. 1

GENOTYPES AND STORAGE DURATION EFFECTS ON THE QUALITY OF CUT FLOWER – GERBERA (GERBERA JAMESONII HOOK)

R.M. MOHSIN, K.N. ABD ASAL, A.A. KAMALUDDIN, and A.A. ZAKY

Citation: Mohsin RM, Abd Asal KN, Kamaluddin AA, Zaky AA (2023). Genotypes and storage duration effects on the quality of cut flower – gerbera (Gerbera jamesonii Hook). SABRAO J. Breed. Genet. 55(1): 260-267. http://doi.org/10.54910/sabrao2023.55.1.24.

Summary

Studies on cut flowers have occurred, for improving their quality is the main priority. One of the top 10 cut flowers in the world, the gerbera, or Transvaal daisy (Gerbera jamesonii Hook), is a flowering plant. The presented study aimed to investigate the effect of genotypes, storage duration, and their interactions on the quality of cut flower – Transvaal daisy. Two cultivars of Gerbera (sweet smile and sweet surprise) and their four storage durations underwent examination on the various parameters of vase life and carbohydrates. The results exhibited that the cultivar ‘Sweet smile’ had exceptional values of the studied parameters compared with the cultivar ‘Sweet surprise.’ The treatment of seven days with dry-cool storage proved superior upon 14- and 21-day treatments (11.71, 11.05, and 5.94, respectively) and had the highest positive effects on vase life and flower carbohydrate content compared with the other two storage treatments. The treatment of zero days (non-stored flowers) was significantly superior to seven-day storage. The interactions of cultivars and storage durations gave the highest effect in reducing the depletion of the carbohydrates content in cultivars with zero days, increasing the flower’s vase life. Therefore, the highest values recorded for the cultivar Sweet smile are zero days, followed by seven days of storage, compared with the rest of the treatments.

Keywords: Gerbera – Transvaal daisy (Gerbera jamesonii Hook), cut flower, storage durations, vase life, carbohydrates

Key finding: For gerbera (Gerbera jamesonii Hook), the highest desirable values emerged for the cultivar, Sweet smile, at zero days, followed by seven days of storage compared with other treatments. Sucrose is widely used in floral preservation, while cold storage facilitates conservation.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 260-267, 2023
http://doi.org/10.54910/sabrao2023.55.1.24
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

PROPAGATION PROTOCOL OF THE MEDICINAL PLANT – ALOE VERA USING TISSUE CULTURE

Q.S. AL-NEMA and R.M. ABDULLAH

Citation: Al-Nema QS, Abdullah RM (2023). Propagation protocol of the medicinal plant – aloe vera using tissue culture. SABRAO J. Breed. Genet. 55(1): 254-259. http://doi.org/10.54910/sabrao2023.55.1.23.

Summary

Aloe vera is one of the most popular cactus-type plants in the global market due to its widespread uses in pharmaceutical, cosmetic, food, and decorative purposes. The present study derived callus cultures from the Aloe vera plant leaves, then reproduced on agar-solidified MS medium from June to December 2021 at the University of Mosul, Iraq. Results revealed that the MS medium + 3.0 mg L-1 benzyl adenine (BA) proved suitable for induction of leaf callus up to 85%, while the MS medium supplement with 1.0 and 2.0 mg L-1 BA reached 70%. The MS medium with 1.0 mg L-1 BA showed the best results for growing apical shoots of A. vera plants and producing vegetative branches. The formation of roots emerged within two weeks after placing them on the rooting medium. The shoots regenerated from the growing apices and were rooted easily in agar-solidified MS medium. The obtained plants attained successful acclimatization in terms of their growth and length, afterward, transferred to the peat-moss mixture.

Keywords: Aloe vera, callus cultures, propagation, leaves, stems, apical shoot

Key finding: The study aimed to identify the behavior of Aloe vera plants in the culture medium represented by the formation of callus cultures and their differentiation.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 254-259, 2023
http://doi.org/10.54910/sabrao2023.55.1.23
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

AGRICULTURAL DEVELOPMENT BASED ON CRISPR-CAS9 AND RETRONs TECHNIQUES: A PERSPECTIVE APPLICATION ON TOMATO

P.V. HIEU and T.B. TOAN

Citation: Hieu PV, Toan TB (2023). Agricultural development based on CRISPR-CAS9 and Retrons techniques: A perspective application on tomato. SABRAO J. Breed. Genet. 55(1): 237-253. http://doi.org/10.54910/sabrao2023.55.1.22.

Summary

Plant breeding has recently become a vital process in developing desired crop plants. Advances in genetic engineering occur more quickly than ever, with several crops generally created through traditional and modern techniques resulting in increased biomass and phytochemical compounds and adapted to the detrimental environment, such as biotic and abiotic stresses. More precisely, thousands of plant species gained enhancements suitable to various climatic and topographic conditions through genome editing; hence, people’s dreams soon became a reality by implementing biotechnology to study many well-established fundamental grounds. Beliefs that biotechnology will progressively develop are happening in various aspects of modern sciences for crop development to be implemented based on genetic material. Besides the aforementioned benefits, this review manuscript will describe the progress of genome editing like CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) with its modification and Retrons in crops and then determine its beneficial effects, which are more valuable through the application of these methods in crop development. The review further aims to assess the perspective application of CRISPR-Cas9 in the development strategies of virus-resistant tomatoes.

Keywords: Agriculture, tomato (Solanum lycopersicum L.), CRISPR-Cas9, Retron, pathogens, virus resistance

Key findings: The present review insights on describing the development of CRISPR-Cas9 and Retrons techniques and the benefits of its notable effects showed more valuable through the application on crop development. A prospective application on the tomato (Solanum lycopersicum L.) of CRISPR-Cas9 and Retrons technique in the development strategies for virus-resistance tomato also needs a concern.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 237-253, 2023
http://doi.org/10.54910/sabrao2023.55.1.22
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

TOMATO SEEDLING PRODUCTION USING AN INOCULUM PREPARED WITH PLANT GROWTH-PROMOTING RHIZOBACTERIA (PGPR) ISOLATES

A.E.S. AL-KURTANY, S.A.M. ALI, and M.F. OLEAWY

Citation: Al-Kurtany AES, Ali SAM, Oleawy MF (2023). Tomato seedling production using an inoculum prepared with plant growth-promoting rhizobacteria (pgpr) isolates SABRAO J. Breed. Genet. 55(1): 230-236. http://doi.org/10.54910/sabrao2023.55.1.21.

Summary

A study to attain healthy tomato (Lycopersicon esculentum Mill) seedlings through environment-friendly natural biological products took place from January to March 2022. Determining the effects of the inoculum prepared from five plant growth-promoting rhizobacteria (PGPR) isolates, i.e., Pseudomonas fluorescens, Pseudomonas putida, Lysinibacillus fusiformis, Enterobacter cloacae, and Kineococcus radiotolerans on the production of tomato seedlings, experiments proceeded at the Soil Microbiology Laboratory, Department of Soil Science and Water Resources, College of Agriculture, Tikrit University, Iraq. The isolates underwent screening for their efficiency as a biostimulant to dissolve insoluble phosphate compounds and produce indole acetic acid (IAA) and chelating compounds. The results showed the ability of all the isolates to produce IAA, chelating compounds, and solubility of phosphates. The P. fluorescens isolate showed superior in its phosphate solubilization and IAA production (41.30 mg p-1, 13.00 mg ml-1), followed by P. putida, E. cloacae, L. fusiformis, and K. radiotolerans, respectively, with the production of medium chelating compounds. The results also showed the superiority of the inoculated treatments over the non-inoculated treatments in the percentage and speed of germination, the length of tomato seedlings, the shoot dry weight, the number of leaves per plant, and root weight parts. The treatments with P. fluorescens displayed significant superiority in all studied traits, followed by P. putida, E. cloacae, L. fusiformis, and K. radiotolerans.

Keywords: Tomato seedlings, bacterial inoculation, Enterobacter cloacae, Pseudomonas fluorescens, Kineococcus radiotolerans, Pseudomonas putida

Key findings: The inoculum prepared from bacteria P. fluorescens proved superior over the rest of the bacterial species. Hence, highly recommended for adoption to produce healthy seedlings of tomato by relying on the biological inoculum.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 230-236, 2023
http://doi.org/10.54910/sabrao2023.55.1.21
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1