Journal

Category Archive Journal

DEVELOPMENT OF RICE GERMPLASM BASED ON GENETIC VARIABILITY IN F5 SEGREGATING POPULATIONS

W.U. KHAN, S.M.A. SHAH, H. ULLAH, I.H. KHALIL, S.A. JADOON, and D. WANG

SUMMARY

Water scarcity is a global dilemma, and rice crop needs plenty of water for optimum growth and yield. In the current climate change scenario, developing a broad-based gene pool of rice to help the crop breeders develop high-yielding cultivars needs dire action. This study assessed the genetic variation among 10 diversified parents and their 15 F5 populations developed under limited water supply for various morphological traits. Parents and F5 populations showed significant differences at 5% and 1% for most of the studied maturity and yield traits. F5 population ‘Dokri-Basmati/DR-92’ exhibited earliest for days to heading (93) with the highest culm length (85.5 cm). Maximum flag leaf area (34.67 cm2) resulted for the F5 population ‘DR-83/NIAB-IRRI-8.’ On the other hand, the F5 population ‘DR-83/DR-92’ excelled in performance for the number of primary branches panicle-1 (11). F5 population ‘IR-8/NIAB-IRRI-9’ displayed the longest panicle (28.70 cm) with the highest number of secondary branches panicle-1 (38). Three of the F5 populations ‘DR-92/DR-83,’ ‘DR-83/NIAB-IRRI-8,’ and ‘NIAB-IRRI-9/IR-8,’ displayed maximum heritability for panicle length (0.82), the number of primary branches (0.80), and secondary branches panicle-1 (0.94), respectively, offering the prospects for development of potentially high-yielding variety. The highest genetic advance for panicle length (9.87%) emerged from the F5 population ‘DR-92/DR-83,’ which also had the highest heritability for this trait. F5 population ‘DR-83/DR-92’ manifested maximum genetic advance (3.32%) for primary branches panicle-1, while ‘NIAB-IRRI-9/IR-8’ revealed the highest genetic advance (6.26%) for secondary branches panicle-1. Both of these populations may be suitable for developing the spreading type of rice germplasm with the potential water stress. F5 populations displayed differential responses for the studied traits, with none of the segregating populations excelling for studied maturity and yield traits. However, the germplasm pool created can serve as a better collection for improving existing populations from a production traits perspective under water-stress conditions or developing new cultivars focusing these traits for the target water stress region(s).

Keywords: Broad sense heritability, F5 populations, genetic advance, genetic variations, maturity traits, panicle traits, rice

Key findings: The study suggested that several genotypes have the potential for use in a breeding program for abiotic stresses, even if no genotypes showed as best for all the traits because of their diverse background. The germplasm can serve as material in the indigenous breeding program of rice and could also be available to other researchers as per a material transfer agreement for secondary breeding.

Download this article

Date published: December 2022

DOI: http://doi.org/10.54910/sabrao2022.54.5.3

Tags

GENETIC VARIABILITY AND INHERITANCE OF PHYSIOLOGICAL AND YIELD TRAITS IN UPLAND COTTON UNDER DIVERSE WATER REGIMES

H. MATNIYAZOVA, S. NABIEV, А. АZIMOV, and J. SHAVKIEV

Summary

Water scarcity during the flowering and ripening stages disrupts physiological processes in crop plants. The recent study on cotton genotypes and their F1 hybrids under two different water regimes (nonstress and stressed conditions) took place in 2018–2020 at the Institute of Genetics and Experimental Biology, Academy of Sciences, Tashkent, Uzbekistan. In optimum and controlled water regimes, the cotton genotypes received irrigation four times, using 4800-5000 m3/ha water. However, under stress conditions, the genotypes received only two irrigations, using 2800-3000 m3/ha water. Comparing the optimum water regime with the water stress conditions, chlorophyll ‘b’ in plant leaves decreased by 3.0% to 46.7% and 1.1% to 26.2% in the parental cultivars and their F1hybrids, respectively. With water deficit conditions, the carotenoid content increased from 8.5% to 39.1% and 2.1% to 44.2% in plant leaves of parental cultivars and their F1hybrids, respectively, compared with the optimal water condition, which indicates how cotton genotypes protect themselves from water scarcity by varying magnitudes of carotenoids in plant leaves. The use of decreased levels of chlorophyll ‘a’ and ‘b’ and increased levels of carotenoids aided the inhibition of oxidants during photooxidation under drought conditions. The F1 hybrids viz., Listopad × Farovon (62.2±0.9 g.), F1 Kupaysin x Elastik (55.8±1.2 g.), F1 Listopad × Kupaysin (55.7±0.2 g.) produced higher seed cotton yield, which might be due to their resistance to drought conditions, as well as heterosis. These promising populations proved suitable for developing drought-tolerant cotton genotypes in future breeding programs.

Keywords: Gossypium hirsutum L., water regimes, drought conditions, physiological traits, chlorophyll, carotenoids, yield-related parameters

Key findings: The F1 promising populations, i.e., Listopad × Farovon, Kupaysin x Elastik, and Listopad × Kopaysin, showed resistance to drought conditions and gave higher heterosis and productivity under water deficit conditions.

Download this article

Date published: December 2022

DOI: http://doi.org/10.54910/sabrao2022.54.5.2

Tags, ,

DEVELOPMENT OF NEW RICE STRAIN WITH IMPROVED SINK SIZE AND SOURCE CAPACITY USING A MULTI-PARENT ADVANCED GENERATION INTERCROSS (MAGIC) APPROACH

M.F. ABBASI, A.U. DIN, and F.M. ABBASI

SUMMARY

A new rice strain that grows six feet tall with four times higher potential yield than the conventionally bred variety, JP5, was developed using the MAGIC approach. This new rice type underwent analysis on sink size and source capacity traits, including superior and inferior spikelets, vascular bundles of panicle neck and stem internode, tillering pattern, grain filling pattern, yield, and other morphological attributes. Results indicated that the new strain had more vascular bundles of the stem (42) and panicle neck (35), primary rachis branches of panicle (16.1), superior spikelets, and greater grain weight than the conventionally bred variety, JP5. The panicle measured 45 cm long, with fertile grains of 500 per panicle and a stem diameter of 1.2 cm. During the grain filling duration, the spikelets of this strain and superior spikelets of JP5 gained maximum weight earlier than the inferior spikelets of JP5. Six feet tall plants of this new strain with long and heavy panicles had greater stem wall thickness. There occurred a positive and significant correlation (0.97) between yield and small vascular bundles of the panicle neck, lumen diameter (0.98), leaf length (0.99), leaf width (0.99), flag leaf length (0.99*), flag leaf width (0.97<), panicle length (0.97), fertile grains per panicle (0.98), and plant height (0.97*). The study noted that improving sink size, source capacity, and transportation of assimilation contributed positively toward yield. This novel strategy for grain yield enhancement in rice proved beneficial for other cereals to get significant breakthroughs in their production for ensuring food security.

Keywords: Rice, sink size, source capacity, Abbasi strain, yield traits

Key findings: A new crop breeding methodology focusing on improved sink size, source capacity, and enhanced transportation of assimilate contributed toward the increased potential yield of newly developed rice strains. The strain could grow six feet tall with four-fold higher production than the conventionally bred variety, JP5. Com

Download this article

Date published: December 2022

DOI: http://doi.org/10.54910/sabrao2022.54.5.1

Agronomic responses of diverse bread wheat genotypes to phosphorus levels and nitrogen forms in a semiarid environment

Swailam MA, Mowafy SAE, El-Naggar NZA, Mansour E

SUMMARY

Increasing wheat production has become an urgent requirement to cope with rapid population growth and abrupt climate change. The management of phosphorus (P) and nitrogen (N) is one of the most important factors for sustaining and increasing wheat production, particularly in semiarid environments. This 2-year field study, which aimed to investigate the effect of P levels (0, 35, and 70 kg P2O5 ha−1) and N forms (urea, ammonium sulfate, and ammonium nitrate) on the yield attributes of three diverse highyielding commercial wheat cultivars (‘Shandawel-1’, ‘Sids-14’, and ‘Sakha-95’), was carried out at Om-Elzain Village, Zagazig, Egypt. The results indicated that increasing P levels was accompanied by a substantial increase in all evaluated traits, except spike length, and that high P level (70 kg P2O5 ha−1) was superior. Considerable genetic variation was detected among the evaluated cultivars for all studied traits. Cultivar ‘Sakha-95’, followed by ‘Sids14’, presented the most vigorous growth and enhancements in most yield components, grain yield, and biological yield. Furthermore, ‘Sakha-95’ recorded the highest agronomic P use efficiency, followed by cultivar ‘Sids-14’. N forms did not significantly affect all of the tested traits except plant height, spike number m−2, and 1000-grain weight, during both seasons. Ammonium-containing fertilizer (ammonium sulfate and ammonium nitrate) resulted in the highest values for these traits when compared with urea. Accordingly, ‘Sakha-95’ and ‘Sids-14’ are recommended for commercial use under high P levels. N forms had a marginally substantial effect on grain yield and its attributes.

Download article

Keywords: Phosphorus levels, nitrogen forms, wheat cultivars, grain yield and its attributes, agronomic phosphorus use efficiency, principal component analysis

DOI: http://doi.org/10.54910/sabrao2021.53.4.4

Molecular characterization and n use efficiency of LeAlaAT ‘Mekongga’ transgenic rice lines


Yulita DS, Purwoko BS, Sisharmini A, Apriana A, Santoso TJ, Trijatmiko KR, Sukma D

SUMMARY

Genetic engineering is one of the strategies for developing nitrogen (N)-use-efficient rice (Oryza sativa) varieties. One gene that plays an indirect role in N metabolism is alanine aminotransferase (AlaAT). It can efficiently increase N content and crop yield. In a previous study, the tomato AlaAT gene (LeAlaAT) was successfully isolated and introduced into ‘Mekongga’ rice. The present research was conducted during 2018 and 2019 at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Bogor, Indonesia. The objectives of the present study were to perform the molecular characterization of LeAlaAT ‘Mekongga’ rice lines on the basis of the hpt marker gene, the direct PCR of the LeAlaAT fragment, and the phenotypic evaluation of the selected LeAlaAT T1 ‘Mekongga’ rice lines in response to different N fertilizer rates (0 kg ha−1 [control] and 60, 90, and 120 kg ha−1). This research involved three activities, namely (1) Southern blot analysis, (2) direct PCR, and (3) N use efficiency (NUE) test of ‘Mekongga’ transgenic lines. Southern blot analysis revealed that in T0 transgenic lines, the copy number of the hpt marker gene varied from 1 to 3. Direct PCR confirmed the presence of the AlaAT fragment in the T1 generation of five ‘Mekongga’ transgenic lines. The five transgenic lines showed high panicle number, biomass weight, shoot dry weight, and total grain weight under 120 kg ha−1 nitrogen. The high agronomical NUE of transgenic lines under 120 kg ha−1 N implied that the transgenic rice lines have the potential for efficient N use at a certain minimum level of N (120 kg ha−1 of nitrogen) and should be further evaluated at high N levels.

Download article

Keyword: Ma Alanine aminotransferase, LeAlaAT transgenic rice lines, Mekongga, Southern blot, direct PCR, N use efficiency

DOI: https://doi.org/10.54910/sabrao2021.53.4.14

Assessment of tea plant (Camellia sinensis L.) accessions for pollen sources in natural crossing by using microsatellites

Azka NA, Taryono, Wulandari RA

SUMMARY

Tea (Camellia sinensis L. [O.] Kuntze) is a highly cross-pollinated and self-incompatible plant. Seeds can be harvested from specific individual mother plants in polyclonal tea gardens. Whether the pollen donor plays an important role in seed formation remains unclear. This study aimed to identify the male parents of 72 natural hybridized progenies (F1) from one female parent on the basis of a putative specific allele by using simplesequence repeat (SSR) markers and the exclusion-likelihood method with Cervus 3.0 software. The genetic material, which comprised seven accessions of C. sinensis L., was acquired from Assamica planted in the Kayulandak polyclonal seed garden of the Pagilaran tea plantation in Batang District, Central Java, Indonesia, and was studied during 2019 and 2020. The genotype PGL-15 was used as the female parent, whereas the six candidate genotypes PGL-10, GMB-9, GMB-7, TPS-93, GMB-11, and TRI 2025 were used as the male parents. In this study, 13 SSR loci were used to identify the male parents of the F1 progenies obtained through natural hybridization between one female and six male tea accessions. Results indicated that the exclusion-likelihood method, which correctly predicted 100% of the male parents, was more effective than the putative specific allele approach, which correctly predicted only 34.72% of the male parents in the 72 hybridized F1 progenies of tea plants.

Download article

Keywords: Camellia sinensis L., natural pollination, SSR markers, paternity analysis, putative specific allele, exclusion-likelihood method

DOI: https://doi.org/10.54910/sabrao2021.53.4.10

Rice backcross population assessment for iron tolerance through phenotypic and genotypic analyses

Tam VT, vy LT, Huu NT, Ha PTT

SUMMARY

Iron toxicity has become a serious issue affecting rice (Oryza sativa L.) production in many irrigated lowland areas. The selection of Fe2+-tolerant rice cultivars under iron toxicity conditions and the identification of molecular markers are good approaches to obtaining tangible results. This study aimed to identify simple sequence repeat (SSR) markers that were associated with iron tolerance traits in a rice backcross population. A total of 117 seedlings from the backcross (BC3F2) of ‘OM6830’/‘AS996’//‘AS996’ were phenotyped at the 4-week-seedling stage at Ton Duc Thang University, Ho Chi Minh City, Vietnam. The rice population was screened in Yoshida nutrient medium supplemented with FeCl2 at a concentration of 150 mg L−1 under greenhouse conditions. Phenotypic analysis was conducted by scoring two parameters, namely, root length and leaf bronzing. Genotypic analysis was carried out on the BC3F2 population by using four markers, i.e., RM6, RM240, RM252, and RM451, for association analysis with iron tolerance. A total of 23 BC3F2 lines were selected on the basis of their higher tolerance (score 1) for Fe2+ compared with the tolerant parental line ‘AS996’. The markers RM6 and RM240 were highly polymorphic and identified different Fe2+-tolerant lines in the BC3F2 population. Among the BC3F3 progeny derived from the selected 23 BC3F2 lines, BC3F3-7 was identified as the most Fe2+-tolerant line. BC3F3-15 was also found to be Fe2+ tolerant. Both lines showed good development capability and provided high yields under stress conditions. These tolerant BC3F3 lines could be further screened with additional SSR markers in future breeding programs aiming to increase rice production in iron-contaminated areas of the Mekong Delta, Vietnam.

Download article

Keywords: Backcrosses, iron toxicity, phenotypic and genotypic traits, screening, SSR markers, genetic analysis, Oryza sativa L.

DOI: https://doi.org/10.54910/sabrao2021.53.4.7

Analysis of the genetic diversity of Phalaenopsis orchids with single nucleotide polymorphisms and snap markers derived from the Pto gene

Sukma D, Elina J, Raynalta E, Aisyah SI, Aziz SA, Sudarsono, Chan MT

SUMMARY

The Pto gene is a plant gene that has been reported to be involved in resistance to bacterial pathogens. A partial genomic sequence corresponding to Pto (~449 bp) was isolated from 16 species and four hybrids of Phalaenopsis during 2017 at the Department of Agronomy and Horticulture, IPB University, Bogor, Indonesia. Multiple sequence analysis was performed to find putative single nucleotide polymorphisms (SNPs) and design the corresponding single nucleotide-amplified polymorphism (SNAP) markers, which were in turn used to estimate the genetic diversity of 25 Phalaenopsis species. In total, 20 SNPs, of which 14 were nonsynonymous, were identified from the partial Pto sequences. Eighteen SNAP primers were then developed based on these 14 nonsynonymous and four synonymous SNPs. Validation results showed that 15 SNAP primers showed a polymorphism information content exceeding 0.3, suggesting the existence of more than two alleles for this locus. Upon their use, the SNAP markers described 86% of all interspecies variability. The Pto 52, Pto 349, Pto 229, and Pto 380 SNAP markers were very informative in the determination of genetic diversity. Notably, the existence of these nonsynonymous SNPs implied the possibility of functional changes within the amino acid sequence of the putative PTO protein. Thus, the resulting differences in the activity of the PTO protein may be used to breed tolerance to pathogen infection. Further work may be required to establish a functional link between tolerance to pathogens and the presence of Pto-SNAP markers in Phalaenopsis properly.

Download article

Keywords: Phalaenopsis, moth orchid, diversity, single nucleotide polymorphism, Pto, bacterial resistance

DOI: https://doi.org/10.54910/sabrao2021.53.4.6

Genotype by environment interaction analysis of wheat (Triticum aestivum L.) grain yield under rainfed conditions in Zambia

Tembo B

SUMMARY

Understanding genotype by environment interaction (GEI) is important for crop improvement because it aids in the recommendation of cultivars and the identification of appropriate production environments. The objective of this study was to determine the magnitude of GEI for the grain yield of wheat grown under rain-fed conditions in Zambia by using the additive main effects and multiplicative interaction (AMMI) model. The study was conducted in 2015/16 at Mutanda Research Station, Mt. Makulu Research Station and Golden Valley Agricultural Research Trust (GART) in Chibombo. During2016/17, the experiment was performed at Mpongwe, Mt. Makulu Research Station and GART Chibombo, Zambia. Fifty-five rain-fed wheat genotypes were evaluated for grain yield in a 5 × 11 alpha lattice design with two replications. Results revealed the presence of significant variation in yield across genotypes, environments, and GEI indicating the differential performance of genotypes across environments. The variance due to the effect of environments was higher than the variances due to genotypes and GEI. The variances ascribed to environments, genotypes, and GEI accounted for 45.79%, 12.96%, and 22.56% of the total variation, respectively. These results indicated that in rain-fed wheat genotypes under study, grain yield was more controlled by the environment than by genetics. AMMI biplot analysis demonstrated that E2 was the main contributor to the GEI given that it was located farthest from the origin. Furthermore, E2 was unstable yet recorded the highest yield. Genotype G47 contributed highly to the GEI sum of squares considering that it was also located far from the origin. Genotypes G12 and G18 were relatively stable because they were situated close to the origin. Their position indicated that they had minimal interaction with the environment. Genotype 47 was the highest-yielding genotype but was unstable, whereas G34 was the lowest-yielding genotype and was unstable.

Download article

Keywords: Genotype–environment interaction, additive main effects and multiplicative interaction analysis, genetics, stability, Triticum aestivum L.

DOI: https://doi.org/10.54910/sabrao2021.53.4.5

Biochemical and cytological features of onion bulbs and leaves collected from various ecogeographical origins

Nemtinov VI, Kostanchuk YN, Pashtetskiy VS, Motyleva SM, Bokhan AI, Caruso G, Katskaya AG, Timasheva LA, Pekhova OA


SUMMARY

Allium cepa L. genotypes with different ecogeographical origins revealed the highest nutritional values when grown in Crimea, Russia. However, their environmental adaptation should be further investigated. This research was performed during 2016–17 to evaluate the qualitative, antioxidant, and mineral composition characteristics of 15 onion genotypes, of which four originated from the Federal State Budget Scientific Institution, Research Institute of Agriculture, Crimea, Russia. Sweet onion genotypes exhibited high ascorbic acid contents of 11.8–27.3 mg/100 g. However, some genotypes had a narrow range of ascorbic acid content (11.8–21.1 mg/100 g) due to their different ecogeographical origins and proved to be appropriate for industrial processing because of their spicy taste. Intensely colored bulbs had a high content of polyphenols (anthocyanins), which are known to have a positive influence on human health. Electronic microscopic assays revealed the morphological characteristics of A. cepa L. genotype leaves and demonstrated the differences in epidermal structure and adaptability potential. The 12 main mineral macro- and microelements with the highest contents in onion leaves were analyzed. The hyperaccumulator genotype with the highest leaf macro- and microelement content could be used to address mineral element deficiencies in humans. In onion genotype leaves, the contents of the mineral elements followed the order of Zn > Fe > Si > Na > Р > Cl > Mo > Mg > S > Ca > Cu > K. The biochemical analysis of 13 onion cultivars showed that the majority exceeded the standard values of dry matter and sugars (mono- and disaccharides) by 13% and 46%, 11% and 48%, and 36% and 150%. In onion genotypes, leaf surface microstructure was specific, and the largest stomata corresponded to the most productive cultivars.

Download the article

Date Published: December 2021

Keywords: Onion, bulb (Allium cepa L.), ascorbic acid, leaves, electronic microscopy scanning, energy dispersion X-ray analysis, mineral elements

DOI: https://doi.org/10.54910/sabrao2021.53.4.1