Author Archive

Response of heat-stress tolerant and susceptible wheat lines in diverse planting environments by using parametric stability models

M. ZULKIFFAL, J. AHMED, M. RIAZ, Y. RAMZAN, A. AHSAN, A. KANWAL, I. GHAFOOR, M. NADEEM, and M. ABDULLAH

SUMMARY

In Pakistan, wheat planting is delayed because of dawn sowing, which reduces yield due to terminal heat stress. This effect can be alleviated by changing sowing times. Therefore, parametric stability analysis was carried out with eight different sowing dates (environments), namely, early, normal, late, and very late, with 10-day intervals in 2019–2020 and 2020–2021 at the Wheat Research Institute, Faisalabad, Pakistan. Significant heat stress responses were observed at the latter two sowing dates. The genetic and phenotypic relationship among the traits revealed that the normalized vegetation index (NI) had a positive correlation with grain yield (kg ha−1) (Yi) and 1000-grain weight (g) (GrWt). However, canopy temperature (CaTe) had a negative correlation with Yi, GrWt, and NI. For Yi and GrWt, the linear environmental response (α) and deviation from linear response (λ) were observed as transformed forms of regression coefficient (bi) and deviation from regression (S2d). Planting dates, i.e., E1, E6, and E7, had slight effects on Yi, and E6, E7, E2, and E8 had slight effects on GrWt. Meanwhile, E3, E4, E5, E1, E3, and E4 exerted a strong effect on the genotype by environment interactions for Yi and GrWt. For Yi, lines G23, G20, and G21 were adapted to E8; G9 and G19 were adapted to E1; and G15, G17, and G22 were adapted to E5. For GrWt, G13, G20, G3, G11, G21, and G15 were adapted to E8 and E4; G10, G7, G8, and G5 were adapted to E5; G4, G22, and G17 were adapted to E6 and E4; and G24 and G2 were adapted to E2 and E3. The candidate wheat lines with enhanced GrWt and Yi were found in E5 and E6 (late sowing) and E7 and E8 (very late) and presented tolerance to terminal heat stress.

Download the article

Keywords: Probing, heat stress, candidate lines, sowing date, parametric stability models, bread wheat

DOI: http://doi.org/10.54910/sabrao2022.54.1.12

Characterization of Bangladeshi Aus rice landraces under drought stress

MD.I. KHALIL, MD.R. HOSSAIN, A.K. CHOWDHURY and MD.M. HASSAN

SUMMARY

Genetic diversity is a prerequisite for crop improvement. This study, which was carried out at Patuakhali Science and Technology University, Bangladesh, explored the genetic diversity of 38 Bangladeshi aus rice (Oryza sativa L.) landraces under drought stress by using phenotypic and simple sequence repeat (SSR) markers. Nonhierarchal clustering analysis with Mahalanobis‟ D2 statistic based on the data of morphological traits divided the studied landraces into four groups. High variability was found among the groups. Group 3 had the highest number of tillers per plant, spikelets per panicle, and panicle length. Group 2 had high 100-seed weight, and group 4 showed the highest yield per plant. Spikelets per panicle showed the maximum variation among all of the traits in the four groups. Principal component analysis showed that PC1 contributed 32.24% of the total variation, whereas PC2 accounted for 26.20%. Compared with the other traits, plant height, spikelet per panicle, and yield per plant exhibited a greater influence on the phenotypic variation observed in PC1. Compared with other traits, 100-grain weight, days to harvesting, and days to 50% flowering contributed highly to the variation found in PC2. In SSR analysis, the highest polymorphism information content (PIC) of 0.87 was observed for markers RM207 and RM256 and the lowest PIC of 0.64 was observed for markers RM212 and RM274. ‘Madab jata’ showed the highest similarity value (0.7) with ‘BRRI dhan 42’. ‘Lonka gora binni’ exhibited a similarity value of 0.588, and ‘Koba binni’, ‘Parija’, ‘Gota irri’, ‘Chitri’, and ‘Putiraj’ presented a similarity value of 0.556 with ‘BRRI dhan 42’. Among these genotypes, ‘Madab jata’, ‘Lonka gora binni’, and ‘Koba binni’ formed a cluster with ‘BRRI dhan 42’ with the coefficient of 0.53. Therefore, ‘Madab jata’, ‘Lonka gora binni’, and ‘Koba binni’ might contain drought-tolerant alleles and can be used for future research programs. The high genetic variability obtained in this work indicates that the studied rice genotypes contain drought-tolerant alleles and could be used for breeding drought-tolerant rice cultivars.

Download the article

Keywords: Aus rice, genetic diversity, genetic variability, landraces, drought tolerant genotypes, principal component analysis, SSR markers

DOI: http://doi.org/10.54910/sabrao2022.54.1.11

Improvement of large-seeded waxy corn (Zea mays L. var. ‘Ceratina Kulesh’) populations for food and industrial purposes

Chaiyaphum A, Chankaew S, Falab S, Sukto S, Sanitchon J, Lertrat K, Suriharn K

SUMMARY

Shallot (Allium cepa var. Aggregatum) is an economically important nutritive vegetable and medicinal plant. Given their low seed production, shallots are vegetatively propagated by using bulb material. Flowering is essential for transferring important traits, such as resistance to Fusarium oxysporum and tolerance to salinity. However, the flowering abilities and times of shallot cultivars are very diverse. Therefore, studying the mechanism and regulatory genes of flowering is mandatory. The AcFT2 gene has a significant correlation with flowering in shallots. The present research aims to obtain information on the gene sequence, relative expression, and correlation of AcFT2 with flowering in shallots under vernalized and nonvernalized conditions. This study was conducted from August 2019 until September 2019 at the Center for Tropical Horticulture Studies, IPB University, Tajur, Bogor, Indonesia. Gene isolation and expression analyses were conducted from October 2019 to July 2020 at the Horticulture Laboratory, Gifu University, Japan. The shallot cultivar ‘Lokananta’ was subjected to vernalization at 8 °C for 6 weeks under nonvernalization treatment and then planted for 30 days for gene isolation. The AcFT2 gene sequence generated from the shallot cultivar ‘Lokananta’ was analyzed by using Geneious, MUSCLE, and Molecular Evolutionary Genetics Analysis. Gene expression was analyzed via qRT-PCR. Results showed that the AcFT2-like gene obtained from shallot had high homology with other FT genes from other plants, especially plants in the Allium genus. The shallot cultivar ‘Lokananta’ showed relatively similar expression as the partial shallot AcFT2-like gene under vernalization and nonvernalization treatments given that the number of umbel flowers did not significantly differ between both treatments.

Download the article

Keywords: Vernalization and nonvernalization, qRT-PCR, AcFT2, umbel flower

DOI: http://doi.org/10.54910/sabrao2022.54.1.10

Characterization and expression of the partial flowering locus t-2 gene in the shallot (Allium cepa var. Aggregatum) cultivar ‘Lokananta’

A. CHAIYAPHUM, S. CHANKAEW, S. FALAB, S. SUKTO, J. SANITCHON, K. LERTRAT, and K. SURIHARN

SUMMARY

Shallot (Allium cepa var. Aggregatum) is an economically important nutritive vegetable and medicinal plant. Given their low seed production, shallots are vegetatively propagated by using bulb material. Flowering is essential for transferring important traits, such as resistance to Fusarium oxysporum and tolerance to salinity. However, the flowering abilities and times of shallot cultivars are very diverse. Therefore, studying the mechanism and regulatory genes of flowering is mandatory. The AcFT2 gene has a significant correlation with flowering in shallots. The present research aims to obtain information on the gene sequence, relative expression, and correlation of AcFT2 with flowering in shallots under vernalized and nonvernalized conditions. This study was conducted from August 2019 until September 2019 at the Center for Tropical Horticulture Studies, IPB University, Tajur, Bogor, Indonesia. Gene isolation and expression analyses were conducted from October 2019 to July 2020 at the Horticulture Laboratory, Gifu University, Japan. The shallot cultivar ‘Lokananta’ was subjected to vernalization at 8 °C for 6 weeks under nonvernalization treatment and then planted for 30 days for gene isolation. The AcFT2 gene sequence generated from the shallot cultivar ‘Lokananta’ was analyzed by using Geneious, MUSCLE, and Molecular Evolutionary Genetics Analysis. Gene expression was analyzed via qRT-PCR. Results showed that the AcFT2-like gene obtained from shallot had high homology with other FT genes from other plants, especially plants in the Allium genus. The shallot cultivar ‘Lokananta’ showed relatively similar expression as the partial shallot AcFT2-like gene under vernalization and nonvernalization treatments given that the number of umbel flowers did not significantly differ between both treatments.

Download the article

Keywords: Vernalization and nonvernalization, qRT-PCR, AcFT2, umbel flower

DOI: http://doi.org/10.54910/sabrao2022.54.1.9

Apple cultivars and rootstocks assay for the identification of diverse viruses and healthy genotypes for breeding

M.T. UPADYSHEV

SUMMARY

The prevalence of harmful viruses, viz., apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV), and tomato ringspot virus (ToRSV) in apple tree plantations in the Ryazan, Yaroslavl, and Moscow regions, Russian Federation, based on genotype features, planting type (industrial, collection, and repository), and tree age was studied during 2018–2021. The prevalence of harmful and latent viruses ranged from 49.6% to 53.8% in apple cultivars and from 8.3% to 100% in apple clonal rootstocks. The most common virus in the Moscow and Yaroslavl regions was ACLSV (34.7% and 53.8%) and that in the Ryazan region was ApMV (33.3%). Relative to that in young apple trees, the virus influence in older tree tissues was higher by 20% to 43% depending on virus type. Monoviral infection prevailed (59% of all trees were infected with one virus) in the studied apple tree cultivars. Of the cultivars, 25% were infected by a complex of two viruses (ASPV + ACLSV), 10% were infected by three viruses, and 6% were infected by four viruses. The highest prevalence of latent viruses was observed in old Russian cultivars (53.5%) and selections from old foreign cultivars (57.2%). Virus occurrence was slightly lower (51.6%) in new Russian cultivars than in other cultivars. Columnar apple tree cultivars had the lowest virus occurrence (30%) and were found to be more tolerant than other genotypes. The highest virus incidence was recorded in industrial orchards (63.4%), followed by that recorded in collection (20.8%) and repository (18.3%) plantations. By using ELISA, the apple genotypes that were free from harmful viruses were identified as source plants, i.e., 183 plants from 18 apple tree cultivars and 131 plants from clonal rootstocks. Results indicated that virus-free apple germplasm is highly effective for the successful implementation of breeding and genetic improvement.

Download the article

Keywords: Malus domesticа Borkh., viruses, cultivars, rootstock, diagnostics, ELISA

DOI: http://doi.org/10.54910/sabrao2022.54.1.8

Assessment of sugar beet genetic diversity in the Republic of Kazakhstan by using RAPD markers and agromorphological traits

A.M. ABEKOVA, R.S. YERZHEBAYEVA, S.O. BASTAUBAYEVA, K. KONUSBEKOV, T.A BAZYLOVA., D.I. BABISSEKOVA, and A.A. AMANGELDIYEVA

SUMMARY

Sugar beet is a highly valuable and profitable crop in the Republic of Kazakhstan. It is the only source of raw materials for the production of crystalline sugar and incidentals (tops, bagasse, and molasses). This study aimed to determine the genetic diversity of 53 sugar beet samples, 19 parental lines, and 34 hybrids from Kazakhstan by using random amplified polymorphic DNA (RAPD) markers, agromorphological traits, root mass weight, and sugar content at the Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Republic of Kazakhstan. The experimental conditions were optimized for the 14 RAPD primers used in this study. The polymorphism index contents varied from 0.24 to 0.46, and all 14 primers were classified as moderately informative. The cluster analysis of RAPD data divided the sugar beet samples into seven groups. The greatest distance (D = 1.4) was noted among the male sterile lines ‘MS-1611’, ‘MS-1631’, ‘MS-97’, and ‘MS-2113’ and the pollinator lines ‘VP-44’ and ‘VP-23’. The samples were divided into six groups on the basis of root mass weight and sugar content via cluster analysis. The hybrids ‘RMS-90’, ‘RMS-134’, ‘RMS-133’, ‘RMS-136’, and ‘Ramnes’ were grouped in a cluster that showed the highest values of root mass weight, which ranged from 610 g to 680 g. However, the samples with high sugar content (18.2–18.5), i.e., ‘Shecker’, ‘2198’, ‘H-22’, and ‘1005’, were grouped into a cluster with a distance of D = 0.8. Lines located at a large genetic distance from each other were recommended for hybridization when creating highly productive hybrids. These findings can be applied in the development of new productive and stable sugar beet hybrids in Kazakhstan.

Download the article

Keywords: Genetic diversity, markers, RAPD, root mass weight, sugar content, sugar beet

DOI: http://doi.org/10.54910/sabrao2022.54.1.7

Tags,

Meta-QTL analysis associated with bacterial stalk rot resistance in maize (Zea mays L.) segregating populations

O.T. BAER, C.E. REANO, G.B. GREGORIO, MG.Q. DIAZ, LJ.A. PABRO, L. TAMBA, N. BALTAZAR, ME.R. FABREAG, A.E. POCSEDIO, S. LACAM, A.G. KUMAR, and T.P. LAUDE

SUMMARY

Bacterial stalk rot (BSR) caused by Dickeya zeae is one of the important diseases of maize that significantly affects maize yield performance. Resistance to D. zeae is influenced by high humidity and temperature. Affected tissues are described as soft, mushy, and emitting a foul odor. Yield losses can reach approximately 98.8% of the grower‟s potential. Quantitative trait locus (QTL) mapping experiments using seven biparental populations were conducted at Syngenta Philippines, Inc., from 2014–2020 to locate consistent QTL and markers involved in BSR resistance. The QTL detected in NMM033, NMM073, NMM089, NMM090, NMM091, NMX003, and NMX001 populations were used to estimate the numbers and positions of consensus QTL with BioMercator V4.2.3 software. Metaanalysis for BSR resistance was conducted by considering all QTL for BSR resistance traits identified in 2014–2020. Among the 49 distinct markers on chromosomes (chrs) 1 to 10, eight most significant loci 1 were detected, i.e., MSRQTL1-1, MSRQTL2-1, MSRQTL3-1, MSRQTL3-2, MSRQTL5-1, MSRQTL5-2, MSRQTL6, and MSRQTL10-1. Meta-QTL were identified in chrs 1, 5, and 10 in four populations; in chr 2 in three populations; and in chrs 3 and 6 in two populations evaluated in this study. The regions identified in chrs 1, 2, 3, 5, 6, and 10 with high QTL colocalization across biparental populations were considered as important QTL for BSR resistance traits. Further implementation through fine-mapping is recommended for marker development. The impact of this discovery would strengthen downstream applications in marker-assisted backcrossing and is not only limited to maize BSR resistance but also to other native traits of different crops.

Download the article

Keywords: Zea mays L., bacterial stalk rot, Meta-QTL analysis

DOI: http://doi.org/10.54910/sabrao2022.54.1.6

Physiological and molecular response of cotton (Gossypium hirsutum L.) to heat stress at the seedling stage

M. SAJID, M.A.B. SADDIQUE, M.H.N. TAHIR, A. MATLOOB, Z. ALI, F. AHMAD, Q. SHAKIL, Z.U. NISA, and M. KIFAYAT

SUMMARY

The ideal temperature range for the optimal growth and development of cotton is 25 °C–32 °C and high temperature adversely affects the metabolic activities of plant cells. This study was aimed to screen heat-tolerant cotton genotypes based on physiological and molecular parameters. Experiments were carried out during 2019–2020 at the MNS-University of Agriculture, Multan, Pakistan. The research comprised two parts. In the first experiment, 30 cotton genotypes were sown in a completely randomized design with three replications under laboratory conditions for the determination of cell membrane thermostability. Principal component analysis was performed, and four genotypes, i.e., two heat-tolerant (‘CRIS-5A’ and ‘VH-338’) and two heat-sensitive (‘FH-242’ and ‘VH-281’) genotypes, were selected. In the second experiment, the screened cotton genotypes were sown in pots in a factorial complete randomized design with three replications and two treatments (normal and heat treatment). Heat stress was applied at the seedling stage, and eight leaf samples (one from each experimental unit) were collected. Two genes were used for molecular analysis and were amplified in all eight cDNA samples. Molecular analysis indicated the presence of HSP70 and HSP26 genes in the cotton genotypes, and the expression of these genes was measured by using ImageJ software. The gene expression level of HSP70 was very high (16.41%) in ‘VH-281’, which is a heat-sensitive genotype under heat stress. The sensitive genotype ‘FH-242’ exhibited the highest gene expression level of HSP26 (20.32%) under normal conditions. A similar sequence of HSP70 gene of Agave sisalana was amplified for the first time in cotton. It is a good indicator for screening heat tolerant cotton genotypes at the molecular level.

Download the article

Keywords: CMT, cotton, screening, heat shock proteins, high temperature, RCI%, oxidative damage 

DOI: http://doi.org/10.54910/sabrao2022.54.1.5

Combining ability and heterosis in Sorghum (Sorghum bicolor L.)

MAFTUCHAH, H. WIDYANINGRUM1, A. ZAINUDIN1, SULISTYAWATI, H.A. RESWARI, and H. SULISTIYANTO

SUMMARY

For the sustainable improvement of sorghum (Sorghum bicolor L.), local genotypes were conventionally crossed in East Java, Indonesia to determine a) the crossing success of different genotypes, b) germination percentage and seed setting traits, and c) the combining ability and heterotic effect of sorghum parental genotypes and their F1 diallel hybrids. Three sorghum genotypes (‘Lamongan-1’, ‘Tulungagung-2’, and ‘Jombang’) from the local germplasm were collected from various regions in East Java, Indonesia, and were crossed in a complete diallel design. The experiment was carried out in a randomized complete block design with four replications during 2018–2019 at the Agrotechnology Laboratory, Faculty of Agriculture, University of Muhammadiyah, Malang, Indonesia. Results showed that the parental genotypes and their F1 hybrids exhibited significant differences in seed weight and seed diameter and nonsignificant differences in germination percentage and seed setting. The parental genotype ‘Tulungagung-2’ and its hybrids ‘Jombang’ × ‘Tulungagung-2’, ‘Tulungagung-2’ × ‘Lamongan-1’, and ‘Jombang’ × ‘Tulungagung-2’ presented the highest germination percentages, seed setting, seed weights, and seed diameters. The genotype ‘Tulungagung-2’ had the highest general combining ability and was identified as a good general paternal and maternal parent for the production of promising F1 hybrids. The hybrid ‘Jombang’ × ‘Lamongan-1’ had the highest specific combining ability for all of the characters and was recognized as a promising F1 hybrid for improving sorghum yield. Cluster analysis divided all of the parental genotypes and their F1 hybrids into two large groups with a similarity of 13.13%.

Download the article

Keywords: Conventional breeding, parental genotypes, F1 diallel hybrids, crossing success, germination percentage, heterosis, heterobeltiosis, combining ability

DOI: http://doi.org/10.54910/sabrao2022.54.1.4

Tags

Genetic variability and inheritance pattern of yield components through diallel analysis in spring wheat

D.E. QULMAMATOVA, S.K. BABOEV and A.K. BURONOV

SUMMARY

Wheat is the third most important staple crop in the world, hence, its sustainable production remained the primary focus due to increasing global consumption. This study aims to determine the genetic potential of spring soft wheat (Triticum aestivum L.) F2 populations for yield traits. Six wheat genotypes were used for diallel reciprocal crossing and a total of 12 hybrids in comparison to parental genotypes were studied from 2015 to 2018 at the Institute of Genetics and Plant Experimental Biology, Academy of Sciences, Tashkent, Uzbekistan. In parental genotypes, the average spikelets per spike were similar, however, the highest index per spike was recorded in cultivars Bardosh (56.8±1.02), Unumli Bugdoy (57.9±1.05), and Sayhun(56.3±0.79). The F2 populations were recorded with the highest number of spikelets per spike and shifted to the right side by 2-3 classes compared to the parental genotypes. The appearance of right-sided regression and identified genotypes with higher 1000-grain weight was observed in the populations of cultivar Bardosh. Populations with higher indices (3.5 to 4.4) than parental genotypes were observed in the cross Bardosh × Unumli Bugdoy (21.7%). The range of variability for 1000-grain weight in the cultivars Kroshka and Bardosh belonged to 2nd class, and cultivars Kayraktash, Unumli Bugdoy, Saykhun, and K-5076 belonged to 3rd class. Populations with 1000-grain weight ranged from 44.0 g to 47.9 g, with a percentage estimate of 63.3% for cultivar Kroshka, and 76.7% for Kayroktosh. In the second generation, the variability range was distributed into eight classes. Larger grains were observed in the hybrids of cultivar Kayroktash. Hybridological analysis of the inheritance of quantitative traits exhibited that the grains per spike were mainly inherited according to the type of dominance of the best parent with a high trait index. The grain number and grain weight per spike were inherited by overdominance type of gene action in the characterized F1 populations.

Download the article

Keywords: Bread wheat, quantitative traits, yield, transgressive variability, reciprocal combination

http://doi.org/10.54910/sabrao2022.54.1.3

Tags,