On this volume, studies are on maize, rice, wheat, peanut, Karanda, and mangosteen.
This maiden issue for 2017 contains articles on gembili, brinjal, corn, chilli pepper, rice, cucumber, wheat and maize.
This last issue for 2016 contains articles on yams, Indian mustard, rice, linseed, artichoke, and eggplants.
D.A. SWELAM, A.H. SALEM, M.A. HASSAN, and M.M.A. ALI
SUMMARY
Water scarcity is currently threatening almost every country in the arid regions. Using advanced generations, breeding can help in the development of improved bread wheat genotypes for adaptation to abiotic and biotic stresses. The pedigree selection was practiced on two bread wheat crosses (Sids 12 × Line 44) and (Line 20 × Sakha 93) during two seasons (2017−2018 and 2018–2019) under full irrigation (optimal conditions) and limited irrigation (drought-stressed) conditions at Kafer El-Hamam Agriculture Station, Agricultural Research Center, Giza, Egypt. The results indicated significant differences in two crosses of F2 and F3 families for all the studied traits under optimal irrigation and water stress. The estimates of phenotypic coefficients of variability (PCV) were slightly higher than those of genotypic coefficients of variability (GCV) for all the traits in two crosses of both water regimes. Broad-sense heritability (h2 Bs) estimates, accompanied with high magnitudes of the genetic advance (GA), were higher under optimal irrigation than water stress in F2 and F3 generations of two crosses. A positive correlation was recorded between spikes per plant and grain yield in both water treatments of two crosses. A positive correlation (r) was revealed between offsprings (F3) and their parents (F2) in yield and its components under optimal irrigation and water stress conditions. Hence, the hybridization followed by selection under optimal and drought stress conditions have been a demand to accelerate the genetic gain of wheat grain yield.
Date Published: June 2022
Keywords: Wheat, selection parameters, heritability, genetic advance, water stress
DOI: http://doi.org/10.54910/sabrao2022.54.2.6
D.E. QULMAMATOVA, S.K. BABOEV and A.K. BURONOV
SUMMARY
Wheat is the third most important staple crop in the world, hence, its sustainable production remained the primary focus due to increasing global consumption. This study aims to determine the genetic potential of spring soft wheat (Triticum aestivum L.) F2 populations for yield traits. Six wheat genotypes were used for diallel reciprocal crossing and a total of 12 hybrids in comparison to parental genotypes were studied from 2015 to 2018 at the Institute of Genetics and Plant Experimental Biology, Academy of Sciences, Tashkent, Uzbekistan. In parental genotypes, the average spikelets per spike were similar, however, the highest index per spike was recorded in cultivars Bardosh (56.8±1.02), Unumli Bugdoy (57.9±1.05), and Sayhun(56.3±0.79). The F2 populations were recorded with the highest number of spikelets per spike and shifted to the right side by 2-3 classes compared to the parental genotypes. The appearance of right-sided regression and identified genotypes with higher 1000-grain weight was observed in the populations of cultivar Bardosh. Populations with higher indices (3.5 to 4.4) than parental genotypes were observed in the cross Bardosh × Unumli Bugdoy (21.7%). The range of variability for 1000-grain weight in the cultivars Kroshka and Bardosh belonged to 2nd class, and cultivars Kayraktash, Unumli Bugdoy, Saykhun, and K-5076 belonged to 3rd class. Populations with 1000-grain weight ranged from 44.0 g to 47.9 g, with a percentage estimate of 63.3% for cultivar Kroshka, and 76.7% for Kayroktosh. In the second generation, the variability range was distributed into eight classes. Larger grains were observed in the hybrids of cultivar Kayroktash. Hybridological analysis of the inheritance of quantitative traits exhibited that the grains per spike were mainly inherited according to the type of dominance of the best parent with a high trait index. The grain number and grain weight per spike were inherited by overdominance type of gene action in the characterized F1 populations.
Keywords: Bread wheat, quantitative traits, yield, transgressive variability, reciprocal combination
http://doi.org/10.54910/sabrao2022.54.1.3