Author Archive Kaye1214

Marine algae extracts, and nano fertilizer with zinc and copper effects on growth and macro- and micronutrients composition of apple trees

KH.A. KAREEM, Z.O.O. ALOJANY, and A.S.A. AL-JANABI

SUMMARY

Bioactive compound marine algae extracts (MAE), nano-zinc (nZn) and nano-copper (nCu) fertilizer effects on growth traits, and macro– and micronutrient composition in apple trees were studied. The recent study was carried out in 2021 at the laboratories of the Department of Horticulture and Landscape Gardening, Faculty of Agriculture, University of Kufa, Kufa, Iraq, and Department of Horticulture, College of Agriculture, AL-Qasim Green University, Babylon, Iraq. In the conducted experiment, the treatments comprise the foliar application of marine algae extracts with two concentrations at 0.5 and 1 ml L-1, nZn at 1 and 2 g L-1, nCu at 1 and 2 g L-1, and a control in a randomized complete block design with three replications. The results showed that apple trees treated with marine algae extracts were superior in enhancing the shoot length, diameter, leaves per tree, leaf area, leaf dry matter, and percentages of nitrogen (N), phosphorus (P), potassium (K), and copper (Cu). The other two treatments (nZn and nCu) also showed highest values for some characteristics and moderate values for other traits that excelled the control treatment. Zinc percentage was significant in apple tree leaves when treated with two concentrations of nZn (1, 2 g L-1 ) reaching 1.89% and 1.97%, respectively. The highest Cu percentages were recorded in the apple tree leaves treated with both concentrations of nCu (1, 2 g L-1) reaching 3.66% and 3.78%, respectively. The potassium percentage was significantly high in apple tree leaves for all the treatments. The control treatment was recorded with the lowest values in all the characteristics.

Download the article

Date published: June 2022

Keywords: Apple trees, marine algae extracts, nano-zinc, nano-copper, growth, macro– and micronutrients composition

DOI: http://doi.org/10.54910/sabrao2022.54.2.14

Nitrification inhibitors impact on nitrous oxide emission and ammonia volatilization: A sustainable measure toward a hygienic environment

A. NAWAZ, M.A. MAQSOOD, M.H. ZIA, M.I. AWAN, N. BORDOLOI, A. SHOUKAT, A. FAROOQ, N. RASHEED, M.I. ASHRAF, I. SALEEM, and S. EHSAN

SUMMARY

Nitrogen (N) application to agricultural fields warrants curtailing nitrous oxide (N2O) emission and ammonia (NH3) volatilization for improved use efficiency with a less environmental footprint of N. As a means of mitigating N2O emissions, the efficacy of nitrification inhibitors (NIs) is well established but the efficacy of NIs in reducing NH3 volatilization is not well understood. The study investigated the efficacy of neem oil, pomegranate leaf extract, and dicyandiamide (DCD) coating on prilled urea for reducing N2O emissions and the trend of NH3 release using static air closed chamber technique in an incubation room. The results showed that all NIs reduced N2O flux in the order of 37%–42% by DCD urea, 19%–34% by neem oil coated urea (NOCUs), and 11%–16% by pomegranate leaf extract coated urea (PLECU). However, over uncoated urea, 43%–54% NH3 flux was increased by DCD, 10%-32% by NOCUs, and significantly the least increase (5%–14%) in NH3 cumulative flux was shown by PLECU. Dicyandiamide significantly reduced N2O flux more than all other treatments, and PLECU showed the least increase in NH3emission when compared with other coated treatments. Hence, it is suggested that neem oil and pomegranate leaf extract could be used successfully not only for mitigating N2O emission, but also lessen environmental damages in association with managed N intense agriculture. Moreover, research focus on the increase in NH3 volatilization using DCD needs serious attention, especially in alkaline calcareous soils.

Download the article

Date published: June 2022

Keywords: Coated urea, dicyandiamide, nitrous oxide, nitrogen inhibitors, neem oil, pomegranate

DOI: http://doi.org/10.54910/sabrao2022.54.2.13

Bio-catharantin effects on phenotypic traits and chromosome number of shallots (Allium Cepa L. var. Ascalonicum ‘Tajuk’)

A.T. BILLA, S.S. LESTARI, B.S. DARYONO, and A.S. SUBIASTUTI

SUMMARY

The seasonal production of Allium cepa var. ascalonicum causes a rise in its demand during the offseason. Consumers mostly prefer onion cultivars like the ‘Super Philip’, because of their high productivity, large and round bulbs, shiny appearance, and less spicy taste. In plant breeding, polyploidy induction through mutagens is a technique often used to produce shallot cultivars of better quality. Bio-Catharantin from the leaf extract of Catharanthus roseus L. is used as a polyploid induction agent instead of colchicine. The latest study aimed to determine the effect of BioCatharantin concentration (0.2% and 0.4%) on phenotypic traits (plant height, bulb mass, and the number of bulbs), and the chromosome number to determine the minimum concentration that could cause polyploidization in shallots. The research was conducted from December 2020 to February 2021 in a greenhouse in Madurejo, Prambanan, and the Laboratory of Genetics and Breeding, Faculty of Biology, Gadjah Mada University, Indonesia. Bio-Catharantin concentration did not affect plant height which was comparable with the control. Both treatments caused an increase in bulb mass up to 37.7 and 41.76 g at the concentrations of 0.2% and 0.4%, respectively, compared with the control (31.47 g). The number of bulbs increased up to 10.6 and 9.8 g for 0.2% and 0.4% concentrations, respectively, compared with 8.8 in the control. The ploidy level of cells was increased from 2n (16) to 3n (24) at 2% and 4n (32) at 4% Bio-Catharantin.

Download the article

Date published: June 2022

Keywords: Shallots (Allium cepa L.), Catharanthus roseus L., bio-catharantin, polyploid, chromosome number, phenotypic traits

DOI: http://doi.org/10.54910/sabrao2022.54.2.11

Taxonomic assessment of Curculigo orchioides USING matK and rbcL DNA barcodes

V.T. HO, T.Q. DINH, and T.H. NGUYEN

SUMMARY 

Curculigo orchioides is most commonly used as an imperative medicinal plant in Vietnam. The plant roots are mainly used to treat sexual dysfunction, back pain, arthritis, nephritis, jaundice, and infertility. Given the high market demand in the herbal market, C. orchioides traders commonly adulterate with other similar plants for illegitimate benefits. Maturase K (matK) and ribulose 1,5biphosphate carboxylase (rbcL) DNA barcode loci are presently used to identify the blends and counterfeit the medicinal herbs, as well as, identify the propagating conservation material. Nevertheless, the identification accuracy is highly dependent on NCBI Genbank or Barcode of Life Database (BOLD). In the recent study, the efficiency of DNA barcode loci, matK and (rbcL) for the classification of C. orchioides populations, was investigated during 2020–2021. After examining 11 accessions of C. orchioides collected from different locations in Vietnam, the obtained results revealed that using NCBI database is more effective for classifying C. orchioides. In addition, the matK locus also showed higher identification power than (rbcL) . The obtained findings could be helpful in the trading management, conservation, and development of C. orchioides in Vietnam.

Download the article

Date published: June 2022

Keywords: BOLD, classification, Curculigo orchioides, DNA barcodes, matK, NCBI Genbank, rbcL

DOI: http://doi.org/10.54910/sabrao2022.54.2.16

Isolation and diagnosis of cadmium-resistant bacteria and its potential phytoremediation with the broad bean plant

I.A. ABED, A. MARZOOG, A.M.S. ADDAHERI, and M.H. AL-ISSAWI

SUMMARY

Results of the study proved that phytoremediation can be a promising technique to treat cadmium (Cd)-contaminated soil. Four bacteria types were isolated from the soil; two are autotrophic and others are heterotrophic. Autotrophic bacteria were dominant in soils with 42 mg Cd Kg-1. The total count and diversity of both bacteria types decreased with the increase of Cd in media and reached their minimum limit of tolerance at 60 mg Cd L-1 in terms of the heterotrophic bacteria, while the minimum limit of tolerance in the case of autotrophic bacteria was at 110 mg Cd L-1. The four isolates can form biofilms that ranged in thickness between 2.8–4.3 mm. The tolerant isolates belong to Rhizobium leguminosarum, Pseudomonas fluorescens, Actinobacteria, and Corynebacterium. Shoot and dry weight significantly varied according to the changes in Cd concentrations and isolate types. The level in either shoot or root exceeded critical levels, however, its concentration was higher in the root compared with the shoot. The effect of Cd on broad bean plants began at 80 and 100 mg Cd L-1. The broad bean plant was resistant to growing in the contaminated area by Cd even at 120 mg Cd Kg1DW. The presence of heterotrophic bacteria was noticeably useful for autotrophic bacteria, as well as, for enhancing Cd resistance. The study showed that cooperative phytoremediation could be a safe and active technique to apply in the field soil contaminated with heavy metals.

Download the article

Date published: June 2022

Keywords: Broad bean, cadmium, heavy metals, pollution, resistant bacteria 

DOI: http://doi.org/10.54910/sabrao2022.54.2.17

Gamma-ras and microwave irradiation influence on GUAR (Cyamopsos tetragonoloba: I – markers assisted selection for responding to mutagenic agents

K.A.M. KHALED, F.M. SULTAN, and C.R. AZZAM

SUMMARY

The recent investigation was carried out to determine the effect of different gamma-ray doses and 900 W (2450 MHz) microwave radiation with various exposure times, separately or in combinations, on the yield, yield components, and chemical properties of guar (Cyamopsis tetragonoloba), as well as, to detect variation induction. The cDNA-SCoT technique was used to obtain molecular markers related to some traits. SSR technique was used to sequence the target fragment related to plant height. Gamma-ray doses of 150 and 250 Gy alone, and in combination with 900 W microwaves irradiation applied with different duration or time span (1, 2, 3, and 4 min) influenced the plant height significantly, as well as, number of tillers plant-1 and fresh and dry forage yield, and fresh and dry leaf stem-1ratio. In the second sample, seed yield at harvest time, e.g., pods plant-1, weight of pods plant1 , whole plant dry weight, number of seeds pod-1, length of pod, 100-seed weight, and seeds yield were affected by irradiation with different and varied responses. In the M1 generation, the 18 SCoT primers produced 327 bands ranging between 151–2895 bp in size, out of which 282 were polymorphic (86.24%). In the M2, the 18 SCoT primers produced 328 bands ranging between 2122661 bp in size, out of which 299 were polymorphic (91.16%). The M1 and M2 generations exhibited 89 positive and 39 negative bands, which could be used as marker assisted-selection in response to treated guar plants with different gamma ray doses, separately or in combinations with microwave treatments.

Download the article

Date published: June 2022

Keywords: Gamma irradiation, microwave heating, guar grain, yield and yield components, quality analysis, SCoT 

DOI: http://doi.org/10.54910/sabrao2022.54.2.10

Drought effects on mineral composition of the leaves and seeds of Amaranthus tricolor and Amaranthus cruentus

N.V. TETYANNIKOV, S.M. MOTYLEVA, М.S. GINS, N.V. КOZAK, D.V. PANISCHEVA, M.E. MERTVISCHEVA, L.F. KАBASHNIKOVA, I.N. DOMANSKAYA, and Т.S. PILIPOVICH

SUMMARY

In global climate change, drought stress is one of the environmental restraining factors that can significantly influence the growth and development of crop plants. Drought stress conditions can also cause undesirable changes in plant physiological and metabolic processes. The influence of soil drought on the mineral composition of leaves and seeds of two species of amaranth (Amaranthus tricolor L. and Amaranthus cruentus L.) with С4-type of photosynthesis was studied through energy dispersive spectrometry (ESD). The recent investigations were carried out during the years 20202022 at the Department of Genofonde and Bioresources of Plants, Federal Scientific Center for Horticulture, Moscow, Russia. The research results showed the leaves of both amaranth with major elements, i.e., K (11.23–15.33), Ca (5.15–7.61), P (3.91–3.92), Mg (2.81–3.36), and Cl (1.86–2.29), whereas, relatively lower values were recorded for Fe (0.05–0.48), and Na (0.07–0.11) mass% respectively. Regarding amaranth plants seed composition, the major elements were K (13.86–13.97), P (7.02–9.76), Mg (3.78–5.64), Ca (3.31–4.78), Cl (2.81–5.30), and Mo (2.80–2.86) mass% respectively. In the species, A. tricolor, a strong correlation was observed between the elements, i.e., S-Cu, Mg-Si, Na-Cu, Na-S, Na-Ca, Na-Si, and Si-S in leaves, while in seeds, these were between CaCu, Mg-Cl, Si-Mn, Ca-Mo, and Cl-Mn. In the other species of amaranth, A. cruentus, the elements viz., Mg-S, Mg-Mo, S-Mo, Mg-Cl, S-Cl, Cl-Mo, Cl-P, P-S, Si-Cl, Ca-Mo, S-Ca, Mg-Ca, Mg-P, P-Mo, and Mg-Si in leaves, while Ni-Cu, Mg-P, Si-P, and Si-Cl in seeds also showed strong relationship. Effects of drought led to a weakening of these ties and the formation of new ones. The accumulation of mineral elements in the leaves of amaranth plants varies from species to species under drought conditions, and A. tricolor cv. Valentina was found most resistant to drought conditions.

Download the article

Date published: June 2022

Keywords: Mineral composition, leaves, seeds, drought stress, EDS analysis, Amaranthus tricolor L., Amaranthus cruentus L.

DOI: http://doi.org/10.54910/sabrao2022.54.2.18

Effect of planting and bud placement position on agronomical and physiological traits of sugarcane (Saccharum officinarum L.)

N. MANGRIO, N. MARI, G.S. MANGRIO, Z.A. SOOMRO, A.A. SIMAIR, and B. KUMAR

SUMMARY

Different planting techniques influence the quantitative and qualitative characteristics of sugarcane. This study focused on the hypothesis that altering sett spacing and bud placement position significantly improves sugarcane yield and quality. The experiment was conducted during the periods, 2016–2017 and 2017–2018, under field conditions at the Sugarcane Research Institute, Agriculture Research Centre, Tandojam, Sindh, Pakistan. The sugarcane variety, PSTJ-41, was used for the study in a randomized complete block design (RCBD) with three replications. Spacing between setts included S1 = end to end, S2 = 15 cm, S3 = 22 cm, and S4 = 30 cm. Bud placement position consisted of B1= buds up and down, and B2 = buds faced to ridge. Analysis revealed that sett spacings and bud placement positions significantly (P<0.05) affected almost all the studied agronomical, physiological, and qualitative sugarcane traits. Enhanced sugarcane sprouting (%), crop growth rate (gm-2day-1), leaf area index, cane length (cm), internodes cane-1, millable canes (000 ha-1), Brix (%), commercial cane sugar (CCS %), and cane yield (t ha-1) were observed with setts plantation of a distance at 30 cm apart. In the case of bud position, B2 showed maximum growth, yield, and best quality attributes. The highest and desirable mean values of the various parameters were documented in the interaction of 30 cm sett spacings × buds faced to ridges regarding interactive effects.

Download the article

Date published: June 2022

Keywords: Sugarcane, sett spacing, bud placement position, growth, millable canes, cane yield

DOI: http://doi.org/10.54910/sabrao2022.54.2.19

Ground beetles (Coleoptera: Carabidae) in different agrosystems of Southeast Kazakhstan

R.U. SAIMOVA, K.I. BATYROVA, N.A. BEKENOVA, E. KAUYNBAEVA, and B.K. ESIMOV

SUMMARY

The recent study on ground beetles (Carabidae) was carried out in 2020 over five different agroecosystems, i.e., alfalfa, barley, corn, soybean, and triticale, at the Kaskelen Experimental Farm, Southeast Kazakhstan. Overall, 38 species of ground beetles related to 24 genera were identified. From these, the Harpаlus rufipes, Poecilus cupreusP. versicolor were the dominant ones in the different agroecosystems. Most of the ground beetles are general predators and useful as entomophages. These beetles and their larvae exterminate various agricultural pests. However, the presence of P. versicolorand P. cupreus suggests a threat to the crops. Those species have a mixed diet and are also known as economically significant pests, of which the most famous is the ground beetle Zabrus morio. Different agroecosystems have shown different distributions of ground beetle species, indicating the influence of cultivated crops on the formation of the ground beetle community. Findings from the study could provide the basis for designing crop management programs after promoting the presence of ground beetles that can contribute to the prevention and control of agricultural pests.

Download the article

Date published: June 2022

Keywords: Ground beetles diversity, species distribution, crop management, pests, agro-ecosystems 

DOI: http://doi.org/10.54910/sabrao2022.54.2.21

Tags, , , , ,

Genetic and physiological aspects of silique shattering in rapeseed and mustard

H.S.B. MUSTAFA, T. MAHMOOD, H. BASHIR, E. HASAN, A.M. DIN, S. HABIB, M. ALTAF, R. QAMAR, M. GHIAS, M.R. BASHIR, M. ANWAR, S.A. ZAFAR, I. AHMAD, M.U. YAQOOB, F. RASHID, G.A. MAND, A. NAWAZ, and J. SALIM

SUMMARY

Rapeseed (Brassica napus L.) and mustard (Brassica juncea L.) are two important oilseed crops grown worldwide for edible oil and meal production, as well as, a source of renewable energy. Silique shattering at the maturity stage is the major cause of seed yield reduction in brassica. Losses in seed yield are more in developing countries due to poor management and the non-availability of combine harvesters. Silique shattering resistance is essential for achieving good seed yield especially in Brassica napus. The silique on plants of rapeseed and mustard mature in different phases due to indeterminate growth habit, which is also a reason for shattering losses. Silique shattering is linked with the creation of a dehiscence zone in a brassica pod. When the siliqua wall loses its hydration, along the length of the siliqua, a few cell layers separate the replum from the pericarp tip of the two silique valves. In the dehiscence zone, it involves the collapse of cell walls and cell separation, as well as, the destruction of the middle lamella and enhanced hydrolytic enzyme activity. To avoid seed yield losses, resistance against silique shattering is essential in rapeseed and mustard cultivars. There are multiple QTLs discovered that control variance in silique shattering. Previous studies validated the shattering process in the model plant Arabidopsis thaliana was controlled by eight different genes. However, their role in controlling silique shattering in rapeseed and mustard is unknown. Modern tools of mutation breeding and genetic engineering, especially CRISPR/Cas9 technology, can be utilized to identify the genetic source for shattering resistance in rapeseed and mustard, which will be helpful for the development of silique-shattering resistant cultivars under changing climatic regime.

Download the article

Date published: June 2022

Keywords: Brassica, breeding tools, silique shattering, genetic resistance, seed yield 

DOI: http://doi.org/10.54910/sabrao2022.54.2.1

Tags, , , ,