Author Archive Nelson Tresballes

COTTON GENOTYPES APPRAISAL FOR MORPHO-PHYSIOLOGICAL AND YIELD CONTRIBUTING TRAITS UNDER OPTIMAL AND DEFICIT IRRIGATED CONDITIONS

A. MAKAMOV, J. SHAVKIEV, M. KHOLMURADOVA, U. BOYQOBILOV, I. NORMAMATOV, J. NORBEKOV, N. KHUSENOV, SH. KUSHAKOV, Z. YULDASHEVA, S. KHOSHIMOV, and Z. BURIEV

Citation: Makamov A, Shavkiev J, Kholmuradova M, Boyqobilov U, Normamatov I, Norbekov J, Khusenov N, Kushakov SH, Yuldasheva Z, Khoshimov S, Buriev Z (2023). Cotton genotypes appraisal for morpho-physiological and yield contributing traits under optimal and deficit irrigated conditions. SABRAO J. Breed. Genet. 55(1): 74-89. http://doi.org/10.54910/sabrao2023.55.1.7.

Summary

In agricultural ecosystems, drought has a detrimental effect on crop production, affecting the growth rate and development of the economically important traits of the crop plants. The presented study aimed to assess the genetic potential and aspects of 20 upland cotton cultivars (Gossypium hirsutum L.) for morpho-physiological and yield contributing traits under optimal and deficit irrigated conditions during 2018–2019, at Tashkent, Uzbekistan. With water deficit conditions, the proline content in plant leaves of various cotton genotypes increased (76.36%) compared with the optimal water regime. The chlorophyll a and b, total chlorophyll, and carotenoids can increase and decrease to varying degrees, depending upon the water content in the leaves of cotton genotypes. Results also revealed that upland cotton’s leaf relative water content, excised-leaf water loss, total chlorophyll, chlorophyll a and b, carotenoid and proline contents, plant height, sympodial branching, leaf area, bolls per plant, opened bolls plant, and seed cotton yield depended on water supply conditions and the genotypic composition of the genotypes. Based on the analysis of stress tolerance indices for morpho-yield and some physiological traits of cotton genotypes under different irrigation regimes, genotypes Namangan-77, Hapicala-19, 0-30, Zangi-Ota, Saenr Pena-85, S-2025, KK-602, SAD-35-11, and C-417 revealed tolerant to water deficit conditions. However, the cotton cultivars KK-1796, KK-1795, 1000, L-N1, S-9006, KK-1086, Catamarca 811, S-9008, L-N1, 141, C-4769, and L-45 were not good performers and susceptible to water stress conditions. Results concluded that soil drought conditions during the flowering stage disrupted physiological processes, including leaf relative water content and excised-leaf water loss.

Keywords: Upland cotton (Gossypium hirsutum L.), water optimal and deficit conditions, drought tolerance, morpho-yield traits, physiological variables, correlation

Key findings: The deficit irrigated conditions negatively affected morpho-physiological and yield contributing traits of upland cotton. Cultivars Namangan-77, Hapicala-19, 0-30, Zangi-Ota, Saenr Pena-85, С-2025, КК-602, SAD-35-11, and C–417 revealed more promising and stable performing better than other genotypes for various traits under optimal and deficit irrigated conditions.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 74-89, 2023
http://doi.org/10.54910/sabrao2023.55.1.7
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

GENETIC VARIABILITY, HERITABILITY, AND GENETIC GAIN IN SWEET POTATO (IPOMOEA BATATAS L. LAM) FOR AGRONOMIC TRAITS

K. NURUL-AFZA, A. AZIZ, D. THIYAGU, and J.M. SHAHRILNIZAM

Citation: Nurul-Afza K, Aziz A, Thiyagu D, Shahrilnizam JM (2023). Genetic variability, heritability, and genetic gain in sweet potato (Ipomoea batatas L. Lam) for agronomic traits. SABRAO J. Breed. Genet. 55(1): 61-73. http://doi.org/10.54910/sabrao2023.55.1.6.

Summary

The study aimed to estimate the genetic variability, heritability, and genetic advance in the existing sweet potato (Ipomoea batatas L. Lam) populations for growth and yield traits in Peninsular Malaysia. The experiment transpired in 2020 at the Centre of Excellent Tuber Crops Research, Malaysian Agricultural Research and Development Institute (MARDI), Bachok, Kelantan, Malaysia. A total of 39 sweet potato genotypes studied consisted of introduced hybrids from the International Potato Center (CIP), Peru, Asian Vegetable Research and Development Center (AVRDC), Taiwan, and local conventional and newly released cultivars and breeding lines by MARDI, Bachok, Malaysia. Analysis of variance showed significant (P < 0.05) differences among the potato genotypes for almost all the traits. The phenotypic coefficient of variation (PCV) appeared higher than the genotypic coefficient of variation (GCV) for all traits. With their high heritability estimate (>60%) and a genetic advance of 5% (>20%), the other agronomic traits: storage root yield per plant, individual storage root weight, and yield per hectare, may benefit as useful selection criteria in sweet potato development. Further, recommend these characteristics for consideration while selecting high-yielding sweet potato cultivars. Thus, the findings of this study proved valuable in future breeding programs for improving cultivars and developing more genetic variations in sweet potatoes, especially in Malaysia.

Keywords: genetic variability, heritability and genetic gain, genotypic coefficient of variation, phenotypic coefficient of variation, agronomic traits

Key findings: The selected sweet potato genotypes MIb3 and MIb16 gained authentication as promising lines that can serve in future breeding programs for the development of new high-yielding sweet potato cultivars in Malaysia.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 61-73, 2023
http://doi.org/10.54910/sabrao2023.55.1.6
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

STABILITY ANALYSIS OF WHEAT THROUGH GENOTYPE BY ENVIRONMENT INTERACTION IN THREE REGIONS OF KHYBER PAKHTUNKHWA, PAKISTAN

I. KHAN, S. GUL, N.U. KHAN, O.O. FAWIBE, N. AKHTAR, M. REHMAN, N. SABAH, M.A. TAHIR, A. IQBAL, F. NAZ, I. HAQ, and A. RAUF

Citation: Khan T, Gul S, Khan NU, Fawibe OO, Akhtar N, Rehman M, Sabah N, Tahir MA, Iqbal A, Naz F, Haq I, Rauf A (2023). Stability analysis of wheat through genotype by environment interaction in three regions of Khyber Pakhtunkhwa, Pakistan. SABRAO J. Breed. Genet. 55(1): 50-60. http://doi.org/10.54910/sabrao2023.55.1.5.

Summary

Genotype-by-environment (GEI) interaction provides the basic information that helps breeders to select stable and superior genotypes for targeted environments. Climate change also alters the recommendations of the genotype for a specific condition. The field study carried out during the cropping seasons of 2015–2016 determined the performance of 16 wheat genotypes (13 lines and three cultivars) at three different locations: The University of Agriculture, Peshawar (UAP), Nuclear Institute of Food and Agriculture, Peshawar (NIFA), and Cereal Crops Research Institute (CCRI), Pirsabak-Nowshera, Khyber Pakhtunkhwa, Pakistan. Data on yield contributing parameters (days to heading, spike length, spikelets spike-1, grain weight spike-1, 1000-grain weight, and grain yield) were collected and analysed using analysis of variance (ANOVA) and stability analysis. Mean square values revealed highly significant results for all the traits under consideration for genotypes (G) and locations (L). Likewise, interactions (GEI) were highly significant for all the traits except grain weight spike-1. The performance of genotypes under different locations indicated no similarity. However, the overall performance of genotypes displayed better under environmental conditions of the Cereal Crops Research Institute (CCRI- Location No: 03). According to the Eberhart and Russell approach, the genotypes K-87, PR-113, Pak-13, PR-112, NR-449, and KT-338 were confirmed stable under tested locations for yield contributing traits as their regression coefficient (bi) value exhibited close to unity. Correlations of grain yield with yield contributing traits considered were significant and positive except for days to heading.

Keywords: Wheat (Triticum aestivum L.), stability, correlation, regression coefficient (bi), genotype by environment interaction, yield-related traits

Key findings: Significant results were obtained for the traits of wheat as influenced by genotypes (G), locations (L), and interactions (GEI). However, genotype by environment interactions had no significant effect on grain weight spike-1. Stability analysis identified stability of genotypes, i.e., K-87, PR-113, Pak-13, PR-11`2, NR-449, and KT-338 under tested locations, viz., The University of Agriculture, Peshawar (UAP), Nuclear Institute of Food and Agriculture, Peshawar (NIFA), and Cereal Crops Research Institute (CCRI), Pirsabak-Nowshera.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 50-60, 2023
http://doi.org/10.54910/sabrao2023.55.1.5
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

GENOME-WIDE ANALYSIS OF CYCLIC NUCLEOTIDE-GATED ION CHANNELS (CNGCS) OF ARABIDOPSIS THALIANA UNDER ABIOTIC STRESSES

S. ORANAB, A. GHAFFAR, A. AHMAD, M.F.K. PASHA, B. MUNIR, S. ARIF, S. ISHAQ, S.H. MAHFOOZ, R. KOUSAR, S. ZAKIA, and H.M. AHMAD

Citation: Oranab S, Ghaffar A, Ahmad A, Pasha MFK, Munir B, Arif S, Ishaq S, Mahfooz SH, Kousar R, Zakia S, Ahmad HM (2023). Genome-wide analysis of cyclic nucleotide-gated ion channels (CNGCS) of Arabidopsis thaliana under abiotic stresses. SABRAO J. Breed. Genet. 55(1): 38-49. http://doi.org/10.54910/sabrao2023.55.1.4.

Summary

Cyclic nucleotide-gated ion channels (CNGCs) in plants play a significant role in abiotic and biotic stress tolerance. This study analyzed 20 CNGCs of Arabidopsis thaliana for their potential role under different stresses. According to phylogenetic analysis, the abiotic stress-tolerating gene CNGC19 in A. thaliana showed as closely related to Hordeum vulgare cyclic nucleotide-gated ion channel 19 (HvCNGC19) in barley and Oryza sativa cyclic nucleotide-gated ion channels 4 and 11 (OsCNGC4 and OsCNGC11) of rice. All CNGCs of A. thaliana contains an ion transport domain. HvCNGC19, OsCNGC4, OsCNGC11, and AtCNGC19 contained the same motif 24, which depicted that they might be expressed similarly to AtCNGC19 under salt stress. CNGCs expression signals under abiotic stress showed high expression of AtCNGC19 and AtCNGC20 under salt stress in roots and AtCNGC2 and AtCNGC4 in shoots, yet very low in roots under approximately all stresses. The findings provide widespread implications for future cell signaling research and characterization of CNGCs for their roles under different stresses.

Keywords: Cyclic nucleotide-gated ion channels, barley, rice, motif analysis, signaling, Arabidopsis thaliana

Key findings: The phylogenetic analysis of CNGCs of A. thaliana, rice, and barley depicted that the closely related CNGCs contain similar motifs and might be expressed similarly under different stresses. CNGCs expressed differently in roots and shoots after six and 12 hours under diverse abiotic stresses in A. thaliana.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 38-49, 2023
http://doi.org/10.54910/sabrao2023.55.1.4
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

CHARACTERIZATION AND GENETIC ANALYSIS OF THE SELECTED RICE MUTANT POPULATIONS

N. CHOWDHURY, S. ISLAM, M.H. MIM, S. AKTER, J. NAIM, B. NOWICKA, and M.A. HOSSAIN

Citation: Chowdhury N, Islam S, Mim MH, Akter S, Naim J, Nowicka B, Hossain MA (2023). Characterization and genetic analysis of the selected rice mutant populations. SABRAO J. Breed. Genet. 55(1): 25-37. http://doi.org/10.54910/sabrao2023.55.1.3.

Summary

The development of mutant populations, followed by their characterization, offers a significant opportunity to isolate genotypes and genes with desired traits of interest. This paper assessed the agronomic performance, genetic variability, and yield-related characteristics of 22 M3 generation mutants (gamma ray-irradiated) of rice derived from a promising local rice genotype (Fatema dhan). The seeds of the selected mutants, the original parent, and three cultivars were grown in a randomized complete block design at the research farm of the Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. Few mutants exhibited superior quantitative phenotypic traits compared with parental genotypes and check varieties. Mutant lines 1 and 83 required minimum days to reach maturity, and mutant lines 9, 17, and 80 exhibited significantly higher yield per plant than the parent and check varieties. Heritability analysis and genetic parameters revealed that genetic components mostly controlled all observed traits, with a minor influence on the environment. The higher phenotypic and genotypic coefficient of variation, heritability, and genetic gain confirmed possible rice yield improvement through phenotypic selection. The traits, including days to first flowering and maturity, plant height, and panicle length, showed a significant positive correlation with yield. The principal component analysis revealed that the first two components explained 69% of the total variation between genotypes. Thus, the promising mutant lines (1, 9, 17, 80, and 83) isolated in this study can serve for the development of high-yielding and early-maturing rice varieties.

Keywords: Gamma irradiation, mutagenesis, yield-attributing traits, genetic variability, genetic parameters

Key findings: Few promising rice mutants with higher yield potential got identified. The selected mutants can serve in a varietal development program for obtaining high-yielding rice variety.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 25-37 2023
http://doi.org/10.54910/sabrao2023.55.1.3
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1

MOLECULAR DIVERSITY IN POPULATIONS OF CHILI (CAPSICUM ANNUUM L.)

R. MAULANI, R.H. MURTI, and A. PURWANTORO

Citation: Maulani R, Murti RH, Purwantoro A (2023). Molecular diversity in populations of chili (Capsicum annuum L.). SABRAO J. Breed. Genet. 55(1): 15-24. http://doi.org/10.54910/sabrao2023.55.1.2.

Summary

Chili (Capsicum annuum L.) is a self-pollinated crop, with natural cross-pollination occurring below 4%–5%. It intends to have low heterosis. Developing cross-pollination in chili currently receives much attention to achieve diversity in trait improvement. Double-crossing becomes one of the alternatives to achieving this goal. In this study, three different parental chili genotypes (K, B, and T) gained crossing, with four populations (S2 K, F3 KB, F2 BTKB, and F2 KBBT) developed. Using 11 selected sequence-related amplified polymorphism (SRAP) combination markers that target Open Reading Frame (ORF) regions assessed molecular diversity in these chili populations. Results revealed the possibility of identifying diversity using SRAP markers based on primer profile information. The iMEC analysis showed high values of PIC (0.3381), discriminant power (0.882), and mean polymorphic value (97.88%). The highest similarity emerged between the populations BTKB and KBBT as the reciprocal. Then, the smallest similarity appeared between K and the double cross. Compared with the self-pollinated genotype, SRAP primers discovered that double crosses provided more variation based on Shannon’s index (I) and percentage of polymorphic loci (PPL). The genetic distance denotes maternal inheritance or extraneous involvement in progeny. However, multiple-parent hybridization authenticated the boost in genetic diversity.

Keywords: Interspecific hybridization, chili hybrid, segregation, diversity of hybrid chili, reciprocal, separated clustering

Key findings: Eleven selected SRAP marker combinations can detect genetic diversity in the chili (Capsicum annuum L.) hybrid populations. The double cross population also has the potential to address the uniformity problem in the chili hybrids.

Download this article


SABRAO Journal of Breeding and Genetics
55 (1) 15-24, 2023
http://doi.org/10.54910/sabrao2023.55.1.2
http://sabraojournal.org/
pISSN 1029-7073; eISSN 2224-8978

Date published: February 2023

« Back to main page of SABRAO Journal of Breeding and Genetics Vol. 55 No. 1