A. AMZERI, SUHARTONO, S. FATIMAH, G. PAWANA, and K.P.W. SUKMA
Citation: Amzeri A, Suhartono, Fatimah S, Pawana G, Sukma KPW (2024). Combining ability analysis in maize diallel hybrid. SABRAO J. Breed. Genet. 56(2): 476-492. http://doi.org/10.54910/sabrao2024.56.2.3
Summary
The latest study strategized to evaluate the maize populations by combining ability analysis under optimum and drought-stress environments to assemble the promising parental inbred lines and their hybrid populations with high productivity and resistance to drought stress. From the collection of the Trunojoyo Madura University, Indonesia, came five maize pure lines (UTM 2, UTM 7, UTM 10, UTM 19, and UTM 31) that received crossing in a complete diallel fashion to obtain 20 hybrid populations. The performance of five parental inbred lines and their 20 F1 hybrids’ evaluation in crop season 2021 had a randomized complete block design with three replications under four each for optimum and drought-stress environmental conditions. Data recording ensued on grain yield and drought susceptibility index (DSI). The GCA and SCA variances revealed that grain yield had more influences from the dominant genes with maternal effects at the eight locations; hence, the parental lines have less stimulus on the hybrids’ performance. The genotype UTM2 (G1) appeared resistant to drought-stress conditions based on the DSI value (0.70) and has positive GCA effects for grain yield. Therefore, it can better serve to improve drought resistance and grain yield. The results further exhibited that six maize hybrids, i.e., G3 (UTM 2 × UTM 10), G6 (UTM 7 × UTM 2), G10 (UTM 7 × UTM 31), G11 (UTM 10 × UTM 2), G22 (UTM 31 × UTM 10), and G24 (UTM 31 × UTM 19) were remarkable as commercial hybrids with high grain yield and resistance to drought stress.
The maize inbred line UTM2 was potentially resistant to drought stress conditions with a DSI of 0.70, and it also gave positive GCA effects for grain yield; thus, it can be functional to assemble maize hybrids with high productivity and resistance to drought stress. Six maize hybrids G3 (UTM 2 × UTM 10), G6 (UTM 7 × UTM 2), G10 (UTM 7 × UTM 31), G11 (UTM 10 × UTM 2), G22 (UTM 31 × UTM 10), and G24 (UTM 31 × UTM 19) emerged highly recommendable as commercial hybrids with high productivity and resistance to drought stress conditions.
Citation: Tetyannikov NV, Bome NA, Bazyuk DA (2024). Yield stability analysis of barley mutants using parametric and nonparametric statistics. SABRAO J. Breed. Genet. 56(2): 463-475. http://doi.org/10.54910/sabrao2024.56.2.2.
Summary
Yield stability analysis is important in barley (Hordeum vulgare L.) breeding to produce the highest and most stable yields. This study used parametric and nonparametric statistical methods to assess the barley genotypes’ stability. It aimed to assess the 40 barley mutants belonging to the subspecies of two-rowed and six-rowed barley obtained after mutagenic treatment with phosphemide in two concentrations. The study transpired in 2020–2022 in Russia’s South Moscow and Tyumen regions. The results revealed that environment (46.6%), genotypes (9.1%), and the interaction of environment by study location (26.2%) and genotype by environment (9.5%) contributed the most to grain yield in barley. The highest correlation appeared among the variables. i.e., Wᵢ² и σ²ᵢ, 𝜃ᵢ, S²dᵢ; 𝜃ᵢ и σ²ᵢ, S²dᵢ; NP(4) и S(3), S(6); S(1) и S(2); S(2) и S(3); KR; NP(2) и NP(3) (r = 0.80-1.00); 𝜃(i) и Wᵢ², σ²ᵢ, S²dᵢ; and 𝜃ᵢ и 𝜃(i) ( r = – 0.92-1.00). Higher correlation with grain yield emerged with bi (r = 0.52); S(6) (r = – 0.77); NP(2) (r = – 0.78); NP(3) (r = – 0.79); NP(4) (r = – 0.78); and KR (r = – 0.65). The most stable yields characterized by six-rowed mutants are G20, G22, and G28, derived from the hooded cultivar. The mutants G1, G2, and G40, belonging to the two-rowed barley subspecies, had the highest grain yield potential with less stability.
Two-rowed and six-rowed barley, Hordeum vulgare L., phosphemide concentrations, chemical mutagenesis, genotype by environment interaction, stability parameters, correlation, grain yield
The article discussed the results of yield and stability analyses in two-rowed and six-rowed barley (Hordeum vulgare L.) mutants of M5-M7 generations in different ecological areas using parametric and nonparametric statistical methods.
Citation: Osadchuk MA, Osadchuk AM, Trushin MV (2024). The history of plant breeding in the Russian Federation. SABRAO J. Breed. Genet. 56(2): 453-462. http://doi.org/10.54910/sabrao2024.56.2.1
Summary
The beginning of organized breeding work in Russia concretized at the end of the 19th century in two capitals of the Russian Empire: in 1877 at St. Petersburg and in 1881 in Moscow, where seed quality control stations first opened. The stations’ work transfer to scientific-based functions commenced in the first half of the 20th century by N.I. Vavilov. Under his leadership, the People’s Commissariat of Agriculture of the RSFSR organized an extensive network of 115 breeding and experimental stations. The 20 to 30 years of the 20th century displayed epoch-making discoveries by Russian scientists in the field of genetics. In 1920, N.I. Vavilov discovered and formulated the law of homological series in hereditary variability. In 1925, pioneering worldwide, Russian scientists, under the influence of ionizing radiation, received mutations in yeast fungi. During the same years, S.S. Chetverikov and his students laid the foundation for evolutionary genetics, which became an impetus for developing the modern genetic breeding theory. Later, in the 1930s of the 20th century, A.A. Serebrovsky and N.P. Dubinin proved the divisibility of the gene and substantiated the theory of its complex structure. Based on this discovery, geneticists globally, studying the patterns of inheritance and variability, have discovered and continue to uncover new breeding means.
Russian Federation, selection, breeding, Vavilov
At present, recognizing that breeding and seed production in Russia today are in a challenging state against the background of a rapidly growing market of seeds of foreign selection is urgent. It should be a consideration since realizing the biological potential of the variety is the main factor in increasing production volumes, improving product quality, and reducing its cost. As a result, in addition to economic attractiveness, it guarantees the country’s food independence.
Increasing wheat production has become an urgent requirement to cope with rapid population growth and abrupt climate change. The management of phosphorus (P) and nitrogen (N) is one of the most important factors for sustaining and increasing wheat production, particularly in semiarid environments. This 2-year field study, which aimed to investigate the effect of P levels (0, 35, and 70 kg P2O5 ha−1) and N forms (urea, ammonium sulfate, and ammonium nitrate) on the yield attributes of three diverse highyielding commercial wheat cultivars (‘Shandawel-1’, ‘Sids-14’, and ‘Sakha-95’), was carried out at Om-Elzain Village, Zagazig, Egypt. The results indicated that increasing P levels was accompanied by a substantial increase in all evaluated traits, except spike length, and that high P level (70 kg P2O5 ha−1) was superior. Considerable genetic variation was detected among the evaluated cultivars for all studied traits. Cultivar ‘Sakha-95’, followed by ‘Sids14’, presented the most vigorous growth and enhancements in most yield components, grain yield, and biological yield. Furthermore, ‘Sakha-95’ recorded the highest agronomic P use efficiency, followed by cultivar ‘Sids-14’. N forms did not significantly affect all of the tested traits except plant height, spike number m−2, and 1000-grain weight, during both seasons. Ammonium-containing fertilizer (ammonium sulfate and ammonium nitrate) resulted in the highest values for these traits when compared with urea. Accordingly, ‘Sakha-95’ and ‘Sids-14’ are recommended for commercial use under high P levels. N forms had a marginally substantial effect on grain yield and its attributes.
Keywords: Phosphorus levels, nitrogen forms, wheat cultivars, grain yield and its attributes, agronomic phosphorus use efficiency, principal component analysis
Yulita DS, Purwoko BS, Sisharmini A, Apriana A, Santoso TJ, Trijatmiko KR, Sukma D
SUMMARY
Genetic engineering is one of the strategies for developing nitrogen (N)-use-efficient rice (Oryza sativa) varieties. One gene that plays an indirect role in N metabolism is alanine aminotransferase (AlaAT). It can efficiently increase N content and crop yield. In a previous study, the tomato AlaAT gene (LeAlaAT) was successfully isolated and introduced into ‘Mekongga’ rice. The present research was conducted during 2018 and 2019 at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Bogor, Indonesia. The objectives of the present study were to perform the molecular characterization of LeAlaAT ‘Mekongga’ rice lines on the basis of the hpt marker gene, the direct PCR of the LeAlaAT fragment, and the phenotypic evaluation of the selected LeAlaAT T1 ‘Mekongga’ rice lines in response to different N fertilizer rates (0 kg ha−1 [control] and 60, 90, and 120 kg ha−1). This research involved three activities, namely (1) Southern blot analysis, (2) direct PCR, and (3) N use efficiency (NUE) test of ‘Mekongga’ transgenic lines. Southern blot analysis revealed that in T0 transgenic lines, the copy number of the hpt marker gene varied from 1 to 3. Direct PCR confirmed the presence of the AlaAT fragment in the T1 generation of five ‘Mekongga’ transgenic lines. The five transgenic lines showed high panicle number, biomass weight, shoot dry weight, and total grain weight under 120 kg ha−1 nitrogen. The high agronomical NUE of transgenic lines under 120 kg ha−1 N implied that the transgenic rice lines have the potential for efficient N use at a certain minimum level of N (120 kg ha−1 of nitrogen) and should be further evaluated at high N levels.
Tea (Camellia sinensis L. [O.] Kuntze) is a highly cross-pollinated and self-incompatible plant. Seeds can be harvested from specific individual mother plants in polyclonal tea gardens. Whether the pollen donor plays an important role in seed formation remains unclear. This study aimed to identify the male parents of 72 natural hybridized progenies (F1) from one female parent on the basis of a putative specific allele by using simplesequence repeat (SSR) markers and the exclusion-likelihood method with Cervus 3.0 software. The genetic material, which comprised seven accessions of C. sinensis L., was acquired from Assamica planted in the Kayulandak polyclonal seed garden of the Pagilaran tea plantation in Batang District, Central Java, Indonesia, and was studied during 2019 and 2020. The genotype PGL-15 was used as the female parent, whereas the six candidate genotypes PGL-10, GMB-9, GMB-7, TPS-93, GMB-11, and TRI 2025 were used as the male parents. In this study, 13 SSR loci were used to identify the male parents of the F1 progenies obtained through natural hybridization between one female and six male tea accessions. Results indicated that the exclusion-likelihood method, which correctly predicted 100% of the male parents, was more effective than the putative specific allele approach, which correctly predicted only 34.72% of the male parents in the 72 hybridized F1 progenies of tea plants.
Iron toxicity has become a serious issue affecting rice (Oryza sativa L.) production in many irrigated lowland areas. The selection of Fe2+-tolerant rice cultivars under iron toxicity conditions and the identification of molecular markers are good approaches to obtaining tangible results. This study aimed to identify simple sequence repeat (SSR) markers that were associated with iron tolerance traits in a rice backcross population. A total of 117 seedlings from the backcross (BC3F2) of ‘OM6830’/‘AS996’//‘AS996’ were phenotyped at the 4-week-seedling stage at Ton Duc Thang University, Ho Chi Minh City, Vietnam. The rice population was screened in Yoshida nutrient medium supplemented with FeCl2 at a concentration of 150 mg L−1 under greenhouse conditions. Phenotypic analysis was conducted by scoring two parameters, namely, root length and leaf bronzing. Genotypic analysis was carried out on the BC3F2 population by using four markers, i.e., RM6, RM240, RM252, and RM451, for association analysis with iron tolerance. A total of 23 BC3F2 lines were selected on the basis of their higher tolerance (score 1) for Fe2+ compared with the tolerant parental line ‘AS996’. The markers RM6 and RM240 were highly polymorphic and identified different Fe2+-tolerant lines in the BC3F2 population. Among the BC3F3 progeny derived from the selected 23 BC3F2 lines, BC3F3-7 was identified as the most Fe2+-tolerant line. BC3F3-15 was also found to be Fe2+ tolerant. Both lines showed good development capability and provided high yields under stress conditions. These tolerant BC3F3 lines could be further screened with additional SSR markers in future breeding programs aiming to increase rice production in iron-contaminated areas of the Mekong Delta, Vietnam.
Sukma D, Elina J, Raynalta E, Aisyah SI, Aziz SA, Sudarsono, Chan MT
SUMMARY
The Pto gene is a plant gene that has been reported to be involved in resistance to bacterial pathogens. A partial genomic sequence corresponding to Pto (~449 bp) was isolated from 16 species and four hybrids of Phalaenopsis during 2017 at the Department of Agronomy and Horticulture, IPB University, Bogor, Indonesia. Multiple sequence analysis was performed to find putative single nucleotide polymorphisms (SNPs) and design the corresponding single nucleotide-amplified polymorphism (SNAP) markers, which were in turn used to estimate the genetic diversity of 25 Phalaenopsis species. In total, 20 SNPs, of which 14 were nonsynonymous, were identified from the partial Pto sequences. Eighteen SNAP primers were then developed based on these 14 nonsynonymous and four synonymous SNPs. Validation results showed that 15 SNAP primers showed a polymorphism information content exceeding 0.3, suggesting the existence of more than two alleles for this locus. Upon their use, the SNAP markers described 86% of all interspecies variability. The Pto 52, Pto 349, Pto 229, and Pto 380 SNAP markers were very informative in the determination of genetic diversity. Notably, the existence of these nonsynonymous SNPs implied the possibility of functional changes within the amino acid sequence of the putative PTO protein. Thus, the resulting differences in the activity of the PTO protein may be used to breed tolerance to pathogen infection. Further work may be required to establish a functional link between tolerance to pathogens and the presence of Pto-SNAP markers in Phalaenopsis properly.
Understanding genotype by environment interaction (GEI) is important for crop improvement because it aids in the recommendation of cultivars and the identification of appropriate production environments. The objective of this study was to determine the magnitude of GEI for the grain yield of wheat grown under rain-fed conditions in Zambia by using the additive main effects and multiplicative interaction (AMMI) model. The study was conducted in 2015/16 at Mutanda Research Station, Mt. Makulu Research Station and Golden Valley Agricultural Research Trust (GART) in Chibombo. During2016/17, the experiment was performed at Mpongwe, Mt. Makulu Research Station and GART Chibombo, Zambia. Fifty-five rain-fed wheat genotypes were evaluated for grain yield in a 5 × 11 alpha lattice design with two replications. Results revealed the presence of significant variation in yield across genotypes, environments, and GEI indicating the differential performance of genotypes across environments. The variance due to the effect of environments was higher than the variances due to genotypes and GEI. The variances ascribed to environments, genotypes, and GEI accounted for 45.79%, 12.96%, and 22.56% of the total variation, respectively. These results indicated that in rain-fed wheat genotypes under study, grain yield was more controlled by the environment than by genetics. AMMI biplot analysis demonstrated that E2 was the main contributor to the GEI given that it was located farthest from the origin. Furthermore, E2 was unstable yet recorded the highest yield. Genotype G47 contributed highly to the GEI sum of squares considering that it was also located far from the origin. Genotypes G12 and G18 were relatively stable because they were situated close to the origin. Their position indicated that they had minimal interaction with the environment. Genotype 47 was the highest-yielding genotype but was unstable, whereas G34 was the lowest-yielding genotype and was unstable.
Allium cepa L. genotypes with different ecogeographical origins revealed the highest nutritional values when grown in Crimea, Russia. However, their environmental adaptation should be further investigated. This research was performed during 2016–17 to evaluate the qualitative, antioxidant, and mineral composition characteristics of 15 onion genotypes, of which four originated from the Federal State Budget Scientific Institution, Research Institute of Agriculture, Crimea, Russia. Sweet onion genotypes exhibited high ascorbic acid contents of 11.8–27.3 mg/100 g. However, some genotypes had a narrow range of ascorbic acid content (11.8–21.1 mg/100 g) due to their different ecogeographical origins and proved to be appropriate for industrial processing because of their spicy taste. Intensely colored bulbs had a high content of polyphenols (anthocyanins), which are known to have a positive influence on human health. Electronic microscopic assays revealed the morphological characteristics of A. cepa L. genotype leaves and demonstrated the differences in epidermal structure and adaptability potential. The 12 main mineral macro- and microelements with the highest contents in onion leaves were analyzed. The hyperaccumulator genotype with the highest leaf macro- and microelement content could be used to address mineral element deficiencies in humans. In onion genotype leaves, the contents of the mineral elements followed the order of Zn > Fe > Si > Na > Р > Cl > Mo > Mg > S > Ca > Cu > K. The biochemical analysis of 13 onion cultivars showed that the majority exceeded the standard values of dry matter and sugars (mono- and disaccharides) by 13% and 46%, 11% and 48%, and 36% and 150%. In onion genotypes, leaf surface microstructure was specific, and the largest stomata corresponded to the most productive cultivars.