Citation: Mingramm GY, Mohd KS, Khandaker MM, Chua KA, Fatihah HNN (2024). Combining ability for grain yield and nutritional quality of maize grown in Malaysia: a review. SABRAO J. Breed. Genet. 56(2): 534-546. http://doi.org/10.54910/sabrao2024.56.2.7.
Summary
Maize breeding appears to be a key strategy to ensure global food security. Improving the grain yield and nutritional quality of maize can progress through breeding programs, where hybridization between two genetically contrasting inbreds might lead to producing superior hybrids. This phenomenon occurs as the developed hybrids are 100% heterozygous, and in consequence, expressing heterosis. However, to select parents for the ideal combinations, it is fundamental to understand the genetic status and the ability to combine the different inbreds. This review aimed to highlight the effectiveness of the general combining ability (GCA) and the specific combining ability (SCA) approaches to develop high-yielding and nutritionally enriched maize hybrids adapted to Malaysia´s conditions. Maize breeders have applied various breeding methods, including the biofortification technique to augment the grain yield and nutritional quality of the crop. This technique is the most sustainable, feasible, and affordable one, as it offers more nutritious plants with the required micronutrients. Although a considerable amount of research has succeeded in identifying potential inbred combinations for specific traits and sites, the application of combining ability methods toward developing high-yielding and nutritionally enriched maize hybrids adapted to Malaysia´s conditions has not been maximized. Therefore, it is important to understand the combining ability approaches to develop maize hybrids that could lead to the maximum output for combating the increasing maize global demand.
This review points out the significance of the general and specific combining ability approaches to develop high-yielding and nutritionally enriched maize hybrids.
Citation: El-Malky MM (2024). Heat tolerance and genetic diversity analyses of rice accessions using SSR markers. SABRAO J. Breed. Genet. 56(2): 519-533. http://doi.org/10.54910/sabrao2024.56.2.6.
Summary
The germplasm with heat-tolerant traits is one of the crucial targets effective in rice (Oryza sativa L.) breeding for climate change. Hence, the presented research aimed to improve heat-tolerant cultivars through traditional breeding and molecular markers for climate change adaptability. The results showed most of the studied rice genotypes had a wide range of variability for various traits, with this range also reflected among the tested crosses. The best crosses with the highest mean values for all traits were Giza178 × Giza179, Giza178 × IET 1444, Sakha104 × IET 1444, and Giza179 × IET 1444. The general combining ability (GCA) effects revealed cultivars IET 1444, Giza179, Giza178, and Sakha104 with significant positive GCA influences for tillers and panicles plant-1, filled grains panicle-1, and grain yield per plant. The best identified crosses for almost all traits were Giza177 × Giza178, Giza177 × Giza179, Giza177 × Sakha104, Giza178 × IET 1444, and Sakha105 × IET 1444. The principal component analysis (PCA) divided the seven rice genotypes into two groups. The first one included the sensitive rice cultivars, namely, Giza177, Sakha105, and Sakha101, and the second group comprised tolerant genotypes, i.e., Giza178, Giza179, IET144, and Sakha104. Using 18 SSR markers helped assess the genetic diversity in rice genotypes. The studied markers produced 204 alleles, with a mean of 11.33 per locus. A higher number of alleles per locus resulted from primers RM493, RM341, RM3297, and RM3330. The polymorphic information content (PIC), a reflection of allele diversity and frequency, was moderate and ranged between 0.157 for RM504 and 0.872 for RM3330, with an average of 0.756. Based on the SSR cluster analysis, rice genotypes formed two groups; the first group included the sensitive rice genotypes, while the second was the tolerant genotypes.
Rice (Oryza sativa L.), germplasm, breeding, heat tolerance, genetic diversity, GCA and SCA, SSR markers, yield-related traits
In the presented study, the four rice (Oryza sativa L.) parental genotypes, Giza178, Sakha104, IET 1444, and Giza179, were heat-tolerant, while three genotypes, Giza2177, Sakha 101, and Sakha105, were heat-sensitive. The crosses Giza177 × Giza178, Giza177 × Giza179, Giza177 × Sakha104, Giza178 × IET 1444, and Sakha105 × IET 1444 were notably high-yield crosses. Based on genetic diversity, Giza177, Sakha101, and Sakha105 genotypes were sensitive, and Giza178, Giza179, IET144, and Sakha104 were tolerant. The SSR markers RM493, RM341, RM3297, and RM3330 showed the highest alleles. The promising parental genotypes and their hybrids could be beneficial for developing heat-tolerant rice genotypes.
A. ALI, M. JAVED, M. ALI, S.U. RAHMAN, M. KASHIF, and S.U. KHAN
Citation: Ali A, Javed M, Ali M, Rahman SU, Kashif M, Khan SU (2024). Genetic variability, heritability, and genetic gain in F3 populations of bread wheat (Triticum aestivum L.) for production traits. SABRAO J. Breed. Genet. 56(2): 505-518. http://doi.org/10.54910/sabrao2024.56.2.5.
Summary
Wheat is a globally dominant staple food and one of the highest-consumed products because of its taste, texture, and bread quality. Genetic variability, heritability, and genetic advancement are essential to learning about the yield potential of crops. Finding out wheat’s heritability and genetic advance led to this study’s design at the research area of the Department of Plant Breeding and Genetics, the University of Agriculture, Peshawar, in 2021–2022. The experiment began using 27 wheat genotypes comprising nine parents and 18 F3 populations evaluated in a random complete block design (RCBD) with three replications. Highly significant variations observed came from analysis of variance among parents and F3 populations for days to heading, plant height, tillers plant-1, flag leaf area, spikelet’s spike-1, the number of grains spike-1, a thousand-grain weight, and biomass yield. The highest heritability estimates of 0.82, 0.87, 0.88, 0.89, 0.86, 0.76, 0.88, 0.86, 0.89, 0.87, 0.86, and 0.84 emerged from Watan × Janbaz, Fakhr-e-Sarhad × AUP-5008, Pirsabak-2005 × AUP-5008, Barsat × Tatara, Fakhr-e- Sarhad × Tatara, Pirsabak-2005 × Tatara, Watan × Tatara, Watan × AUP-5008, AUP-4008 × Janbaz, Barsat × Tatara, Watan × AUP-5008, and Barsat x Janbaz, respectively, for productive traits. The highest values of genetic advance were 32.71, 20.33, 35.08, and 34.24 for Fakhr-e-Sarhad × AUP-5008, Fakhr-e-Sarhad × Janbaz, Pirsabak-2005 × Tatara, and Watan × Tatara, respectively. The parental genotypes Janbaz and AUP-5008 were the most promising genotypes recommended for further evaluation in upcoming breeding schemes.
Wheat (Triticum aestivum L.), F3 populations, genetic variability, heritability, genetic gain, production traits
The analysis of variance showed highly prominent variation among genotypes, parents, and F3 populations for most traits observed. The parental genotypes, Janbaz and AUP-5008, and F3 populations, Watan × Janbaz, Fakhr-e-Sarhad × AUP-5008, and Pirsabak-2005 × AUP-5008, exhibited the shortest plants, lengthiest spikes, highest spikelet’s spike-1, higher grains spike-1, early maturing, and remarkably high thousand-grain weight. Saleem-2000 × Janbaz hybrid was smaller and early ripening, with the highest grain yield spike-1, biological, and 1000-grain weight. The hybrid, Watan × Tatara, showed shorter plants, long spikes, a broader flag leaf, the shortest days to heading and maturity, the highest grain yield spike-1, maximum 1000-grain weight, and higher biological yield. Therefore, these genotypes have the potential to benefit future breeding programs.
M.R. ROMADHON, SOBIR, W.B. SUWARNO, MIFTAHORRACHMAN, and D.D. MATRA
Citation: Romadhon MR, Sobir, Suwarno WB, Miftahorrachman, Matra DD (2024). Stability analysis of fruit weight and seed weight over years on fourteen Indonesian local areca nut accessions. SABRAO J. Breed. Genet. 56(2): 493-504. http://doi.org/10.54910/sabrao2024.56.2.4
Summary
Evaluating the stability of local areca nut accession across seasons and years is vital to understanding the production trend and potential. Genotypes with stability across seasons and years indicate their adaptability to different climates, pests, and disease attacks over time. This study aimed to evaluate the fruit and seed weights of 14 Indonesian local areca nut accessions to elucidate the G × E effect on these traits. The research transpired at the Kayuwatu Experimental Station, Palm Research Institute, Manado, North Sulawesi Province, from January 2017 to December 2021. The genetic materials were 14 accessions of areca nut, along with two earlier released local varieties (Emas Areca nut and Betara Areca nut). The experiment ran for five years in one location. The research showed that the G × E interaction significantly affected the fruit and seed weights. The Malinow 1 genotype had the heaviest fruit weight of 57.46 g, and the Betara genotype had a seed weight of 20.06 g. According to a parametric assessment, stable accessions were Betara, Galangsuka, Pinangwangi, SK1, and Malinow 1, and they had above-average fruit and seed weights. This study revealed different stability profiles among areca nut accessions, substantiating the importance of the G × E effect on yield.
This study identified stable areca nut accessions over the years based on fruit and seed weight characteristics, viz., Malinow 1, Galangsuka, Betara, SK1, SK2, and Pinangwangi.
A. AMZERI, SUHARTONO, S. FATIMAH, G. PAWANA, and K.P.W. SUKMA
Citation: Amzeri A, Suhartono, Fatimah S, Pawana G, Sukma KPW (2024). Combining ability analysis in maize diallel hybrid. SABRAO J. Breed. Genet. 56(2): 476-492. http://doi.org/10.54910/sabrao2024.56.2.3
Summary
The latest study strategized to evaluate the maize populations by combining ability analysis under optimum and drought-stress environments to assemble the promising parental inbred lines and their hybrid populations with high productivity and resistance to drought stress. From the collection of the Trunojoyo Madura University, Indonesia, came five maize pure lines (UTM 2, UTM 7, UTM 10, UTM 19, and UTM 31) that received crossing in a complete diallel fashion to obtain 20 hybrid populations. The performance of five parental inbred lines and their 20 F1 hybrids’ evaluation in crop season 2021 had a randomized complete block design with three replications under four each for optimum and drought-stress environmental conditions. Data recording ensued on grain yield and drought susceptibility index (DSI). The GCA and SCA variances revealed that grain yield had more influences from the dominant genes with maternal effects at the eight locations; hence, the parental lines have less stimulus on the hybrids’ performance. The genotype UTM2 (G1) appeared resistant to drought-stress conditions based on the DSI value (0.70) and has positive GCA effects for grain yield. Therefore, it can better serve to improve drought resistance and grain yield. The results further exhibited that six maize hybrids, i.e., G3 (UTM 2 × UTM 10), G6 (UTM 7 × UTM 2), G10 (UTM 7 × UTM 31), G11 (UTM 10 × UTM 2), G22 (UTM 31 × UTM 10), and G24 (UTM 31 × UTM 19) were remarkable as commercial hybrids with high grain yield and resistance to drought stress.
The maize inbred line UTM2 was potentially resistant to drought stress conditions with a DSI of 0.70, and it also gave positive GCA effects for grain yield; thus, it can be functional to assemble maize hybrids with high productivity and resistance to drought stress. Six maize hybrids G3 (UTM 2 × UTM 10), G6 (UTM 7 × UTM 2), G10 (UTM 7 × UTM 31), G11 (UTM 10 × UTM 2), G22 (UTM 31 × UTM 10), and G24 (UTM 31 × UTM 19) emerged highly recommendable as commercial hybrids with high productivity and resistance to drought stress conditions.
Citation: Tetyannikov NV, Bome NA, Bazyuk DA (2024). Yield stability analysis of barley mutants using parametric and nonparametric statistics. SABRAO J. Breed. Genet. 56(2): 463-475. http://doi.org/10.54910/sabrao2024.56.2.2.
Summary
Yield stability analysis is important in barley (Hordeum vulgare L.) breeding to produce the highest and most stable yields. This study used parametric and nonparametric statistical methods to assess the barley genotypes’ stability. It aimed to assess the 40 barley mutants belonging to the subspecies of two-rowed and six-rowed barley obtained after mutagenic treatment with phosphemide in two concentrations. The study transpired in 2020–2022 in Russia’s South Moscow and Tyumen regions. The results revealed that environment (46.6%), genotypes (9.1%), and the interaction of environment by study location (26.2%) and genotype by environment (9.5%) contributed the most to grain yield in barley. The highest correlation appeared among the variables. i.e., Wᵢ² и σ²ᵢ, 𝜃ᵢ, S²dᵢ; 𝜃ᵢ и σ²ᵢ, S²dᵢ; NP(4) и S(3), S(6); S(1) и S(2); S(2) и S(3); KR; NP(2) и NP(3) (r = 0.80-1.00); 𝜃(i) и Wᵢ², σ²ᵢ, S²dᵢ; and 𝜃ᵢ и 𝜃(i) ( r = – 0.92-1.00). Higher correlation with grain yield emerged with bi (r = 0.52); S(6) (r = – 0.77); NP(2) (r = – 0.78); NP(3) (r = – 0.79); NP(4) (r = – 0.78); and KR (r = – 0.65). The most stable yields characterized by six-rowed mutants are G20, G22, and G28, derived from the hooded cultivar. The mutants G1, G2, and G40, belonging to the two-rowed barley subspecies, had the highest grain yield potential with less stability.
Two-rowed and six-rowed barley, Hordeum vulgare L., phosphemide concentrations, chemical mutagenesis, genotype by environment interaction, stability parameters, correlation, grain yield
The article discussed the results of yield and stability analyses in two-rowed and six-rowed barley (Hordeum vulgare L.) mutants of M5-M7 generations in different ecological areas using parametric and nonparametric statistical methods.
Citation: Osadchuk MA, Osadchuk AM, Trushin MV (2024). The history of plant breeding in the Russian Federation. SABRAO J. Breed. Genet. 56(2): 453-462. http://doi.org/10.54910/sabrao2024.56.2.1
Summary
The beginning of organized breeding work in Russia concretized at the end of the 19th century in two capitals of the Russian Empire: in 1877 at St. Petersburg and in 1881 in Moscow, where seed quality control stations first opened. The stations’ work transfer to scientific-based functions commenced in the first half of the 20th century by N.I. Vavilov. Under his leadership, the People’s Commissariat of Agriculture of the RSFSR organized an extensive network of 115 breeding and experimental stations. The 20 to 30 years of the 20th century displayed epoch-making discoveries by Russian scientists in the field of genetics. In 1920, N.I. Vavilov discovered and formulated the law of homological series in hereditary variability. In 1925, pioneering worldwide, Russian scientists, under the influence of ionizing radiation, received mutations in yeast fungi. During the same years, S.S. Chetverikov and his students laid the foundation for evolutionary genetics, which became an impetus for developing the modern genetic breeding theory. Later, in the 1930s of the 20th century, A.A. Serebrovsky and N.P. Dubinin proved the divisibility of the gene and substantiated the theory of its complex structure. Based on this discovery, geneticists globally, studying the patterns of inheritance and variability, have discovered and continue to uncover new breeding means.
Russian Federation, selection, breeding, Vavilov
At present, recognizing that breeding and seed production in Russia today are in a challenging state against the background of a rapidly growing market of seeds of foreign selection is urgent. It should be a consideration since realizing the biological potential of the variety is the main factor in increasing production volumes, improving product quality, and reducing its cost. As a result, in addition to economic attractiveness, it guarantees the country’s food independence.
Citation: Khan SH, Aslam M, Bibi A, Khan HZ (2023). GGE biplot analysis for zinc quality and yield stability of exotic maize hybrids. SABRAO J. Breed. Genet. 55(1): 268-278. http://doi.org/10.54910/sabrao2023.55.1.25.
Summary
Zinc deficiency is one of the major causes of malnutrition in the communities due to the consumption of zinc-deficient staple food. With accessibility and affordability, biofortification is an agricultural intervention beneficial for all the stakeholders involved as any actor. A total of 16 exotic zinc biofortified maize hybrids developed at different maize research stations of CIMMYT got introduced and evaluated across three separate locations in major maize growing areas of Punjab and Khyber Pakhtunkhwa (KP), i.e., Faisalabad, Sahiwal, and Nowshera. The decision to introduce exotic zinc-enriched maize germplasm in Pakistan, in collaboration with CIMMYT, Mexico, came from the findings of a related research work—evaluation of diverse indigenous maize germplasm; however, none of the entry qualified for suggested biofortification standard, i.e., 33 mg/kg zinc. Introducing exotic material depends upon its yield stability in the new environment. Therefore, stability analysis is mandatory. Using genotype and genotype into environment (GGE) biplot analysis found the GEI (genotype × environment interaction). Exotic hybrids G16, G4, and G1 performed superior and stable in test environments for studied traits, especially for average grain yield per plant and grain zinc content. These three hybrids gained strong\ recommendations for introduction in Pakistan.
Key findings: All tested environments differently influenced NGPR, ASI, and GY forming three mega-environments. Exotic zinc biofortified hybrids G16, G4, and G1 were stable and best performing for studied traits, especially average grain yield per plant and grain zinc content across locations. Abbreviations: PH: plant height (cm), EH: ear height (cm), DT: days to tasseling, DS: days to silking, ASI: anthesis silking interval, EL: Ear length (cm), NRPC: number of rows per cob, NGPR: number of grains per rows, GY: average grain yield per plant (g), TGW: thousand grain weight (g), Zn: grain zinc content (mg/kg), and FW: Field weight (g). PC= Principal Component, ZmZIP = Zea mays Zinc regulated transporter, iron regulated transporter-like protein, ZmNAS5 = Zea mays Nicotianamine Synthase, and CIMMYT: International Maize and Wheat Improvement Center.
S.H.A. AL-HADEDY, S.A. BASHEER, M.S. IDREES, and K.A.Y. Al-TAEE
Citation: Al-Hadedy SHA, Basheer SA, Idrees MS, Al-Taee KAY (2024). Sulfuric acid and hot water treatment effects on the seed germination and growth traits of Sesbania punicea L.. SABRAO J. Breed. Genet. 56(1): 444-452 http://doi.org/10.54910/sabrao2024.56.1.40.
Summary
Like many species within the Fabaceae family, Sesbania punicea L. seeds experience seed coat dormancy, affecting their germination from a hard shell coating the seed, preventing water absorption and gaseous exchange into the seeds. The presented research sought to overcome the outer dormancy phase in Sesbania punicea seeds by treating them with two concentrations of sulfuric acid (50% and 98% H2SO4) for periods of 0, 10, and 15 minutes and soaking in hot water (without, with) for 24 hours. The results revealed that seed pretreatment of immersion in sulfuric acid at a 98% concentration was significantly superior to the 50% and showed the highest mean values for the studied parameters, germination percentage, seedling height, stem diameter, leaves per seedling, and shoots dry weight at 78.33%, 61.61 cm, 5.79 mm, 31.27 leaves/seedling, and 7.32 g, respectively. In the same line, the immersion in sulfuric acid for 15 minutes was superior compared with 10 minutes, providing the highest values for the same traits at 87.04%, 64.08 cm, 6.16 mm, 32.08 leaves/seedling, and 8.12 g, respectively. The hot water treatment was notably dominant to the one without soaking and exhibited the maximum values for the above traits (78.55%, 59.83 cm, 5.94 mm, 31.05 leaves/seedlings, and 7.32 g, respectively). The interaction effects of three factors (immersion in 98% sulfuric acid for 15 minutes and soaking in hot water) excelled other treatments for the traits, i.e., germination rate (99.30%), seedling height (71.00 cm), main stem diameter (7.28 mm), leaves/seedling (36.66), and shoot’s dry weight (11.42 g). The most remarkable achievement was that chemical scarification using sulfuric acid and hot water, either individually or in combination, proved effective in breaking the seed dormancy of Sesbania punicea.
For better germination and early growth of Sesbania punicea L. seedlings, the combination of seed immersion in 98% sulfuric acid for 15 minutes and soaking in hot water for 24 hours proved recommendable since it leads to an increase in the germination percentage from 36.9% to 99.3%, enhancing the growth parameters.
Citation: Mahdi MAHS, Al-Shamerry MMG, Taha AH, Alwan MH, Al-Khaykanee AH, Khashan AAA (2024). Micronutrients and planting time effects on maize growth, fertility, and yield-related traits under heat stress conditions. SABRAO J. Breed. Genet. 56(1): 433-443. http://doi.org/10.54910/sabrao2024.56.1.39.
Summary
The recent study pursued determining the ideal quantity of micronutrients and planting time to enhance maize (Zea mays L.) pollen fertility and production under heat-stress conditions. The study set up a maize experiment in a randomized complete block design (RCBD) with split-plot arrangement and three replications, carried out in the crop season 2020 at the Babylon Muradia Research Center, Iraq. The trials comprised two factors: first, planting times placed in main plots, i.e., June 25 (A1), July 10 (A2), and July 25 (A3), and the second included foliar applications of a composition of six microelements (iron, manganese, zinc, boron, copper, and molybdenum) with four concentrations, i.e., 0 (C0), 20 (C1), 30 (C2), and 40 (C3) g L-1. The results indicated that maize planting at later dates, specifically between July 10 and 25, resulted in the maximum levels of moisture, pollen vitality, and fertility percentage, which led to an increase in yield components and grain output. The findings also demonstrated that foliar application of micronutrients effectively creates a conducive environment for developing pollen grains. The micronutrient concentration of 40 g L-1 gave the optimal moisture and vitality of the pollen grains, leading to the highest quantity of grains per row and, ultimately, maximizing the maize yield. The July 10 planting date proved the ideal time for seeding maize because it contributed to reducing temperatures’ effects and increasing productivity. In addition, foliar application of micronutrients (40 g L-1) creates an optimal environment for pollen grains, improving grain composition and yield. With the pollen grain’s better vitality, the favorable situation improves pollination and fertilization, eventually increasing the maize yield.
Maize (Zea mays L.) planting time between July 10 and 25, along with foliar application of micronutrients (40 g L-1), optimized and promoted pollen grains’ moisture, growth, vitality, and fertility percentage, which eventually boosted the yield traits’ components and grain yield.