Chickpea (Cicer arietinum L.) is one of the crucial legume crops and a primary source of protein for human beings worldwide. The genetically diverse accessions are valuable sources for further improvement in chickpeas through breeding. In the presented study, the 36 chickpea lines from the Chickpea International Elite Nursery-Winter, International Center for Agricultural Research in the Dry Areas (ICARDA), bore assessment for yield-related traits. Determining the effects of various quantitative and yield-attributing traits on the seed yield used linear regression. Simple linear regression models ran separate evaluations for each studied parameter, including plant height, the height of the first pod, the number of secondary branches, the number of pods, the number of seeds per plant, and 100-seed weight. According to analysis for high seed productivity in chickpea cultivation under organic production conditions, the approximate model ensures a high yield as follows: The plant height ranged from 68 to –78 cm, height to the first pod (26–31 cm), number of secondary branches (8–14), number of pods (52–79), number of seeds (64–95), and 100-seed weight (25–45 g). In determining the seed productivity of chickpea genotypes, a direct positive and significant correlation occurred between the 100-seed weight and the number of seeds per plant. These parameters can serve as effective selection criteria for enhancing the chickpea yield.
Chickpea (Cicer arietinum L.), regression analyses, correlation coefficient, quantitative traits, yield-related traits, crop productivity
In chickpeas, the seed weight per plant emerged as the pivotal trait influencing seed yield, helping formulate a predictive theoretical model. Additionally, traits like the number of secondary branches and a 100-seed weight demonstrated a substantial positive correlation with seed yield, providing crucial selection criteria for effective breeding programs.