F. ROVIQOWATI, SAMANHUDI, T.J. SANTOSO, E. PURWANTO, A. SISHARMINI, A. APRIANA, and A. YUNUS
Citation: Roviqowati F, Samanhudi, Santoso TJ, Purwanto E, Sisharmini A, Apriana A, Yunus A (2024). Introduction of CRISPR/Cas9 with the target genes to improve agronomic traits and leaf blight resistance in rice. SABRAO J. Breed. Genet. 56(1): 29-44. http://doi.org/10.54910/sabrao2024.56.1.3.
Summary
Improving rice (Oryza sativa L.) quality is crucial to obtaining local rice with better genetic potential and superiority. The research aimed to construct a CRISPR/Cas9 module cassette and introduce the construct into rice to develop a new non-transgenic superior Mentik Susu variety with early maturity, short stem, high yield, and resistance to bacterial leaf blight. The annealed oligonucleotides of gRNA spacers of the HD2 gene ligated into pDIRECT-21A vector plasmid used the golden gate reaction to construct a CRISPR/Cas9 module cassette. The recombinant plasmid’s verification by digestion engaged a combination of KpnI-HindIII restriction enzymes and Sanger DNA sequencing. The Agrobacterium-mediated co-transformation procedure introduced the CRISPR/Cas9 cassettes (four module cassettes with different gRNAs of the genes, i.e., GA20ox-2, OsCKX2, OsSWEET11, and HD2) into the rice genome with immature rice embryos as explants. Molecular analysis of the transformed T0 putative lines ensued to identify the insertion of T-DNA fragments (containing the Cas9 and hptII genes) and the occurrence of mutagenesis employing PCR amplification and DNA sequencing. The result showed that the CRISPR/Cas9 cassette vector containing the Cas9 gene and the targeted gRNA construction succeeded. Rice transformations of Mentik Susu have generated 157 T0 putative lines, with several of the lines harboring the Cas9 and hptII genes detected positively. Sanger DNA sequencing analysis demonstrated that eight rice lines had a mutation occurrence in the target genes, i.e., two mutations in the OsGA20ox line, five mutations in the OsSWEET11 lines, and one mutation in the Gn-1a (OsCKX2) line. Based on these results, it is probable that the mutant lines also have a phenotype change that is beneficial to produce promising rice genotypes with early maturing, short stems, high yield, and bacterial leaf blight resistance.
Oryza sativa L., Mentik Susu rice cultivar, genome editing, CRISPR/Cas9, mutagenesis, early maturity, high yield
The presented research has successfully constructed the CRISPR/Cas9-gRNA-HD2 vector cassette and introduced the construct into rice cv. ‘Mentik Susu’ to edit the HD2 gene for developing an early-maturity rice cultivar. Genome editing of the multiple-gene targets (GA20ox-2, OsCKX2, OsSWEET11, and HD2 gene) in rice cv. ‘Mentik Susu’ has resulted in obtaining several rice lines with the CRISPR mutated genes.
Citation: Anwar MT, Chaki T, Sagor GHM (2024). Genetic and stability analyses for the selection of terminal heat stress- tolerant wheat (Triticum aestivum) genotypes in Bangladesh. SABRAO J. Breed. Genet.56 (1) 1-17. http://doi.org/10.54910/sabrao2024.56.1.1.
Summary
The high temperature during crop growing seasons is prevalent in the Indo-Gangetic region, causing heat stress to the plants. Heat stress in wheat is a threat to food security and agricultural sustainability. Finding a heat-stress stable wheat genotype is a timely demand. A field study scrutinized 60 genotypes, designed with five different sowing dates, each with 10-day intervals, to identify the stable one. All the growth parameters showed significant responses to terminal heat stress effects. Wheat yield declined by 20%–57% with the successive heat-stress increases with late sowing dates. Most plant growth parameters had a similar or slight variation in genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV). The higher PCV in pollen sterility, chlorophyll content, and the number of filled grains than GCV indicates environmental influence on the expression of the characters studied. These parameters also showed a direct positive effect on crop yield when analyzed in their path coefficients. Genotype performance in yield incurred heat-stress tolerance index tests and revealed that Sourav, Gourav, SA-8, Chyria 3, CB-47, and Sabia genotypes had suitable tolerance, stress-susceptibility, and high-yield stability indexes, indicating higher yields in stress condition. AMMI analysis also showed a significant variation, and the genotypes SA-8, Chyria 3, Pavan, DSN-117, and Sonalika were the most stable. The most unstable genotypes were SA-2, Kheri, and FYN-PVN. The genotypes SA-8, Chyria 3, Pavan, DSN-117, and Sonalika can benefit further breeding as sources of genetic material to develop heat-tolerant, high-yielding wheat varieties.
Heat stress significantly affected all the yield-contributing parameters, causing yield reduction at late sown dates by 20%–57% than the optimum planting date. Yield-contributing parameters which had high heritability also influenced environmentally, among the 60 genotypes of wheat SA-8, Chyria 3, Pavan, DSN-117 and Sonalika showing stable performance under different heat-stress conditions, opposite to the SA-2 genotype. The selected materials can further benefit as source materials to develop heat-tolerant, high-yielding wheat varieties.
N.Y. SIAL, M. FAHEEM, M.A. SIAL, A.R. ROONJHO, F. MUHAMMAD, A.A. KEERIO, M. ADEEL, S. ULLAH, Q. HABIB, and M. AFZAL
SUMMARY
Drought is the most devastating abiotic stress which has significantly threatened global wheat production. The recent study was designed to evaluate the performance of eight exotic wheat lines through the Drought Spring Bread Wheat Yield Trial (DSBWYT), along with a local drought-tolerant check cultivar, Khirman, under water-stressed conditions based on agronomic and yield-related traits. The experiment was conducted during cropping season 2019–2020 in a randomized complete block design with three replications at the Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan. The analysis of variance revealed that there was a significant difference among the genotypes for all studied traits. The genotype DSBWYT-8 possessed better agronomic traits and growth features like early growth vigor and early ground cover. On the other hand, the genotype DSBWYT-4 performed better in yield and yield-related traits like main spike yield, grains per spike, and 1000-grains weight. Both genotype revealed excellent plot grain yield and harvest index and were not significantly different from each other. The cluster analysis grouped all the genotypes into three clades. The droughttolerant local check cultivar Khirman clustered with genotypes DSBWYT-2, DSBWYT-4, and DSBWYT-8 thus, this clade can be regarded as drought tolerant. The second cluster comprised of two genotypes, i.e., DSBWYT-1 and DSBWYT-5, which performed relatively low as compared to genotypes present in the drought-tolerant cluster, whereas the genotypes DSBWYT-3, DSBWYT-6, and DSBWYT-7 clustered together to represent low yielding genotypes under drought condition as compared with the check cultivar Khirman. Based on these results, the genotypes DSBWYT-2, DSBWYT-4, and DSBWYT-8 can be recommended as the drought-tolerant genotypes. Keywords: Spring wheat, drought, yield components, agronomic traits
Citation: Mheidi UH, Alhabeeb MI, Shenawa MH (2025). Response of cumin (Cuminum cyminum L.) to planting times and foliar application of licorice extract. SABRAO J. Breed. Genet. 57(1): 359-365. http://doi.org/10.54910/sabrao2025.57.1.36.
Summary
The field study was commenced during the winter of 2020–2021 to study the effects of planting times and licorice extract foliar application on the growth, yield, and quality traits of cumin (Cuminum cyminum L.), conducted at the city of Karma, Anbar Governorate, Iraq. The experiment layout had randomized complete block design (RCBD) with a split-plot arrangement, with two factors. The planting dates November 1 and 20 and December 10, 2020 were the first consideration; the second was the licorice extract with three concentrations 0, 20, and 40 g L-1. The results revealed early planting (first of November) of cumin led to a significant increase in all the studied traits compared with the medium- and late-planting dates. Licorice extract concentration (40 g L-1) effectively improved growth and production characters and enhanced the oil and protein content in cumin fruits (2.62% and 18.52%, respectively). In the interaction of early planting date (November 1) and licorice extract (40 g L-1), the highest yield (1.95 g plant-1) appeared compared with the late planting with the control treatment, which revealed the lowest yield (0.98 g plant-1). The results concluded increasing cumin fruit yield with improved proportions of oil and protein can result from the early planting and foliar application of licorice extract (40 g L-1).
Cumin (C. cyminum L.), planting times, licorice extract concentrations, photoperiods, fruits’ oil and protein content
Results revealed by adopting early planting with licorice concentration (40 g L-1), the cumin (C. cyminum L.) growth and yield traits and fruits’ oil and protein content can be considerably improved.