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SUMMARY

Developing superior clones is crucial in boosting the market competitiveness of Indonesian green tea
(Camellia sinensis L.). However, tea yield and quality mostly sustain influences from temperature,
rainfall, and nutrient availability. In the following study, 35 clones of C. sinensis tea underwent
assessment for genetic diversity, yield stability, and taste quality under different fertilization
conditions at the Research Institute for Tea and Cinchona and the Research Center for Appropriate
Technology, Bandung, Indonesia. The field experiment used a randomized block design with three
replications. Genetic diversity analysis used the principal component analysis (PCA), with the leaf yield
stability analyzed utilizing parametric and non-parametric measurements and flavor quality probed
using a t-test. The tea clones revealed the highest genetic diversity for agro-morphological traits. In
general, all clones have the same quality according to sensory evaluation. Clones 1.1.93, 11.4.149, and
S3 have an NUE greater than 50%. After fertilization, the nitrogen and potassium levels in the tea
plant leaves increased by 0.12% and 0.07%, respectively, while phosphorus decreased by 0.01%.
Among the clones, 22 increased in nitrogen, 24 decreased in phosphorus, and 28 clones increased in
potassium. Notably, nine clones maintained stable pekoe leaf yields across both fertilized and
unfertilized conditions.
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Key findings: The tea (C. sinensis L.) clones showed significant genetic diversity based on agro-
morphological traits. Leaf nitrogen and potassium levels increased by 0.12% and 0.07%, respectively,
while phosphorus decreased by 0.01%. Nine promising tea clones consistently performed better both

under fertilized and unfertilized conditions.

INTRODUCTION
Tea (Camellia sinensis L.) is a widely
consumed beverage worldwide, primarily

cultivated in tropical and subtropical regions
with acidic soils (pH 4.0-5.5), including major
producers like Indonesia and China (Tang et
al., 2020; Prayoga et al., 2020). The individual
consumption globally of processed tea leaves
reached 0.8 kg/year; therefore, increasing and
improving tea production is highly crucial
(Zaman et al., 2022). A type of tea that is
quite popular globally is green tea. For the past
five years, green tea production in the world
has increased by 4.21%. Hence, it is nhecessary
to use clones with good taste based on sensory
evaluation to improve the quality of green tea
in Indonesia (Prayoga et al., 2022).

Tea productivity and quality largely
depend on environmental factors and nutrient
availability. As a leaf-harvested crop, tea
requires balanced macronutrients, such as
nitrogen (N), phosphorus (P), and potassium
(K), to support Ileaf development and
metabolite synthesis. Nitrogen enhances leaf
yield (Sitienei et al., 2013), phosphorus affects
quality and mineral uptake (Ding et al., 2017),
and potassium improves the flavor and
biochemical content (Ruan et al., 2013).
Therefore, efficient and flexible fertilization is
essential due to seasonal nutrient shifts.
Unbalanced nutrients reduced the growth and
leaf quality, making nutrient uptake efficiency
(NUE) and optimized N application crucial
(Wang et al., 2020).

Genetic diversity among tea clones
plays a pivotal role in determining their
adaptability to environmental stressors and
their potential for enhancing product quality. In
several studies, genetic diversity is critical in
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the selection process, where broad genetic
diversity makes the selection process more
effective (Jolliffe, 2002; Maulana et al., 2023).
Tadeo et al. (2023) revealed that extensive
genetic diversity can be applicable to
developing unique tea clones. The best clones
can be outcomes from exploiting genetic
variations of the clones tested. Recent research
underscores the importance of
comprehensively understanding tea clones'
genetic diversity to improve quality and
productivity. By identifying superior clones with
desirable taste characteristics and nutrient
efficiency, the industry can secure its market

position and mitigate the impact of
environmental challenges. Therefore,
conducting thorough investigations into tea

clones' genetic variability and performance
across diverse conditions is vital because most
previous research in Indonesia only focused on
productivity alone (Prayoga et al., 2021).

In the presented study, in collaboration
with the Research Institute for Tea and
Cinchona and the National Research and
Innovation Agency, Indonesia, evaluating 35
Indonesian Sinensis clones helped identify the

superior, nutrient-efficient, and high-yielding
genotypes for sustainable tea cultivation.
Through the examination of agro-

morphological traits and nutrient profiles, the
study sought to detect clones with superior
qualities and stable vyields under various
fertilization regimes. The anticipated findings
from this study will offer invaluable insights
into the genetic diversity and nutrient
efficiency of Indonesian tea clones, thereby
contributing significantly to the advancement
of sustainable cultivation practices and the
enduring success of the Indonesian tea
industry.
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Table 1. List of 35 Sinensis tested clones.

No. Clones Code No. Clones Code
1 1.1.70 T1 19 11.3.16 T19
2 1.1.93 T2 20 11.3.38 T20
3 1.1.100 T3 21 11.4.149 T21
4 I.1.101 T4 22 11.4.32 T22
5 1.2.34 T5 23 11.4.178 T23
6 1.2.45 T6 24 R1 T24
7 1.2.85 T7 25 R3 T25
8 1.2.188 T8 26 S1 T26
9 1.4.113 T9 27 S2 T27
10 11.1.3 T10 28 S3 T28
11 11.1.32 T11 29 SGMBA T29
12 11.1.38 T12 30 Yabukita T30
13 11.1.60 T13 31 GMBS 1 T31
14 11.1.76 T14 32 GMBS 2 T32
15 11.1.98 T15 33 GMBS 3 T33
16 11.2.43 Ti6 34 GMBS 4 T34
17 11.2.108 T17 35 GMBS 5 T35
18 11.2.146 T18

MATERIALS AND METHODS

The latest research comprises three main
phases: green tea processing, sensory
evaluation, and nutrient uptake efficiency. The
experiment commenced at the Research
Institute for Tea and Cinchona (RITO),
Bandung, West Java, Indonesia (RITC, 2006).
The breeding material comprised 35 clones of

Sinensis tea procured from the RITC
germplasm. All the clones originated from Pasir
Sarongge, Cianjur District, West Java,

Indonesia, except the clone Yabukita, which
was introduced from Japan (Table 1).

Green tea processing

Green tea processing continued using
steaming. As many as 500 g of p+3 shoots
(pekoe + three leaves, harvested manually)
sustained steaming at ~200 °C for five
minutes under four bar pressure. The steamed
buds underwent air-drying for one hour, then
pan-drying at 100 °C for 14 minutes. The
leaves’ rolling manually took 15 minutes before
finally drying them using a tray dryer (mesh
14: 1.4 mm wire holes) at 100 °C for 30
minutes (Prayoga et al., 2021).
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Nutrient uptake efficiency (NUE)

Nutrient uptake efficiency evaluation
constituted comparing leaf yield before and
after fertilization. The plucking time range was
60 days after fertilization. The plucking
succeeded with a professional using pruning
shears. The fertilizer dosage applied was
according to the Tea Plant Cultivation Technical
Manual, with 250 kg/ha urea (N), 60 kg/ha
TSP (P205), and 60 kg/ha ZK (K20) applied per
plant (Jolliffe, 2002). The nutrient uptake
efficiency calculation followed the method of
Prayoga et al. (2020):

Ydf — Yef

NUE = x100%

Where NUE = the nutrient uptake efficiency
(%), Ydf = the yield after fertilization (kg/ha),
Yef = the yield before fertilization (kg/ha), and
F = the weight of applied fertilizers (kg/ha).

Moreover, the N, P, and K content of
the tea plants acquired testing in the leaves
before and after fertilization. The analysis of
the N, P, and K content of leaves used the
titrimetry method, referring to the Technical
Instructions for Chemical Analysis of Soil,
Plants, Water, and Fertilizers (Institute ISR,
2009).
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Sensory evaluation

Three expert panelists performed sensory
evaluation following the Indonesian National
Standard SNI 3945:2016. Brewing two grams
of tea from 35 clones used 100 ml of boiling
water at 96 °C-98 °C before leaving for 10
minutes, following Prayoga et al. (2022). Then,
separating the tea solution from the infused
leaf followed. Evaluated parameters included
dry appearance (1-5), liquor color (1-5), taste
(21-49), aroma (1-5), and infused leaf (1-5).
The total taste properties entailed calculation
based on the formula according to Prayoga et
al. (2021), as follows:

TVGT = (VDA x 3) + (VLC x 3) + (VT x 1)
+ (VA x 2) + (VIL x 2)

Where TVGT = the total value of green tea,
VDA = the value of dry appearance, VLC = the
value of liquor color, VT = the value of taste,
VA = the value of aroma, and VIL = the value
of infused leaf.

TVGT score classification was according
to the following categories: < 50 = baddest,
50-59 = bad, 60-69 = fair, 70-79 = good,
80-89 = premium, and 90-99 = special.

Antioxidant activity testing used the
radical scavenging activity (RSA) method,
where measurements employed the DPPH
(2,2-diphenyl-1-picrylhydrazyl) based on Al-
Obaidi and Sahib (2015).

Statistical analysis

The breeding material comprised 35 clones of
Sinensis tea procured from the RITC
germplasm. This research proceeded in a
randomized complete block design with three
replications. The principal component analysis
(PCA) engaged the Past3 software (Norwegia)
and examined the relationships among 35 tea
clones based on quality, nutrient uptake
efficiency (NUE), and leaf yield. Data scrutiny
employed the analysis of variance (ANOVA)
and Tukey’s HSD test (5%) with PKBT Stat 3.1
(Indonesia). Nutrient content differences
before and after fertilization underwent testing
using a t-test (5%) in SPSS 16.0 (United
States of America).
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The parametric and non-parametric
stability models served for identifying stable
tea clones. For linear regression, the study
followed the Eberhart and Russell (1966)
model, with stability as shown by the
regression slope (bi) of 1 and a variance
deviation (S2di) of 0. The mean-variance
component (6i) and GE variance component
(B)) estimates employed Plaisted and Peterson
(1959) and Plaisted (1960), respectively.
Wricke’s ecovalence (Wi2), Shukla’s stability
variance, and coefficient of variation (CVi)
relied on Wricke (1962), Shukla (1972), and
Francis and Kannenberg (1978), respectively.

Non-parametric  stability (S [in
followed the approach of Nassar and Huhn
(1987); NP(i) was from Thennarasu (1995),
with Kang’s KR based on Kang (1988). Yield
and stability variances incurred equal weighing
(1) to identify the high-yielding and stable tea
clones. STABILITYSOFT was the program used
for the analysis (Pour-Aboughadareh et al.,
2019). The tea clones’ grouping utilized the
dendrogram from stability rankings.

RESULTS
Genetic variation in clones

The beneficial study examines the relationship
among the leaf vyield, antioxidant activity,
organoleptic traits, and NUE of tea clones using
the principal component analysis (PCA). Table
2 presents the eigenvalues of all the tested tea
parameters. Only the components with
eigenvalues = 1 were useful, as explained by
the significant cumulative variation (Maulana et
al., 2023).

The first five principal components
(PCs) explained 76.72% of the total variation
among 35 tea clones (Table 2). The PCA
revealed PCl (24.27%) as influenced by the
total value (TV), PC2 (19.58%) by inhibition
and AA, PC3 (14.03%) by multiple traits, PC4
(9.81%) by NUE, and PC5 (9.04%) by leaf
yield. These findings identified the traits
driving genetic diversity among the tea clones.

The PCA biplot showed the
relationships among the traits (Figure 1). The
antioxidant active (AA) and inhibition, stem
diameter (ST) and plant height (PH), and
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Table 2. Trait values influencing the diversity of 35 tea clones.

Traits PC1 PC2 PC3 PC4 PC5
Leaf yield 0.026 0.033 0.196 -0.336 0.578
Nutrient uptake efficiency (NUE) -0.099 0.009 -0.055 0.762 -0.101
Inhibition -0.158 0.502 -0.314 -0.040 -0.114
Antioxidant activity (AA) -0.158 0.502 -0.315 -0.040 -0.114
Dry appearance (DA) 0.150 0.156 -0.445 0.158 0.473
Liquor color (LC) 0.381 0.026 0.118 0.320 0.097
Taste 0.434 0.137 -0.062 -0.175 -0.328
Aroma 0.387 -0.202 -0.033 -0.110 -0.305
Infused leaf (IL) 0.364 0.247 -0.038 -0.010 0.327
Total value (TV) 0.540 0.105 -0.102 0.024 -0.091
Plant height (PH) -0.008 0.428 0.444 0.003 -0.204
Stem diameter (ST) -0.019 0.385 0.467 -0.047 0.010
Number of branch (NB) 0.096 0.082 0.342 0.361 0.198
Eigenvalue 3.155 2.545 1.824 1.275 1.175
Variability (%) 24.267 19.576 14.033 9.807 9.038
Cumulative (%) 24.267 43.843 57.876 67.683 76.721

PC = principal component; Numbers in bold indicate a discriminant of > 0.5 or < 0.5 that contributed to the variance.
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Figure 1. Principal component analysis (PCA) biplot of 35 tea clones based on agro-morphological
traits. For tea clones code, see Table 1, and for trait codes, see Table 5.

dry appearance (DA) and infused leaf (IL) have
significant positive correlations, as shown by
sharp vector angles. Other considerable links
include IL-taste, taste-TV, TV-LC, and LC-
aroma. Clones T3, T22, T23, and T24 were
close to the trait of aroma, indicating the
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highest aroma. The tea clone T21 lies near LC,
suggesting high AA. Other groupings were T30
(TV), T11 (taste), T12 and T32 (IL), T2 and T7
(DA), T20 and T27 (AA/inhibition), and T10
(NUE). Tea clones opposite a trait vector were
likely to have low values for the said trait.
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Table 3. Analysis of variance for 35 Sinensis tea clones and t-test of nutrient content in the leaves.

F table o
Characters F count 5% 1% CV (%)
Quality parameters
Dry appearance 1.87" 1.6 1.95 5.97
Liquor color 3.32" 1.6 1.95 7.44
Taste 1.08" 1.6 1.95 6.04
Aroma 1.30m 1.6 1.95 9.28
Infused leaf 1.32" 1.6 1.95 3.63
Total Value 1.58"s 1.6 1.95 4.21
Nutrient uptake efficiency
Weight per hectare (FO) 2.26™ 1.6 1.95 27.00
Weight per hectare (F1) 1.53m 1.6 1.95 23.13
The difference in weight per hectare (F1-FO) 8.73™ 1.6 1.95 38.13
Average Weight per hectare 1.69” 1.6 1.95 24.54
NUE 8.73™ 1.6 1.95 38.13
t-test of nutrient content in leaves
Nutrient t count t table Mean SD
Nitrogen (N) (%) 3.23% 2.03 -0.12 0.21
Phosphorus (P) (%) 2.16* 2.03 0.01 0.17
Potassium (K) (%) 4.33* 2.03 -0.07 0.09

* = significantly different at P < 0.05, ** = significantly different at P < 0.01, ns =

not significantly different, CV =

coefficient of variation, FO = Before fertilization application, F1 = After fertilization application.

Nutrient uptake efficiency

The analysis of variance showed significant (P
< 0.01) differences among the 35 C. sinensis
clones for weight per hectare before and after
fertilization, as well as the nutrient uptake
efficiency (NUE) (Table 3). Among the tea
clones, the average yield per hectare also
differed substantially (P < 0.05). Tukey’s HSD
test confirmed notable differences in weight
change and NUE (Table 5). Clone 1.1.93
excelled all other clones with the highest
values for weight gain (237.18 kg/ha) and NUE
(64.10%).

Plant leaf nutrient analysis displayed
significant variations in macronutrients such as
nitrogen, phosphorus, and potassium levels
(Table 3). On average, nitrogen and potassium
increased by 0.12% and 0.07%, respectively,
while phosphorus decreased by 0.01%, and
the t-test confirmed these trends (Table 5).
According to the leaf analysis, nitrogen
enhancement succeeded in 22 tea clones,
phosphorus decline resulted in 24 clones, and a
rise in potassium occurred in 28 clones. The
results suggested more efficient absorption of
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nitrogen and potassium than phosphorus in the
tested tea clones.

Tea leaf yield under different conditions

Leaf yield stability refers to a clone’s ability to
perform consistently across diverse
environments. Stability analysis assesses the
genotype by environment interactions and
determines that a clone is broadly stable or
specifically adapted (Pour-Aboughadareh et al.,
2022). This study used various parametric and
non-parametric models to identify the tea
clones with the highest and most stable leaf

yields under fertilized and non-fertilized
conditions.

Evaluating tea clone leaf vyield
consistency used the following methods.

Cluster analysis, as shown in the dendrogram
(Figure 2), grouped the tea clones based on
stability rankings. Clones with similar ratings
achieved clustering together. However, the
dendrogram revealed four groups, i.e.,
unstable-medium vyield (blue), unstable-low
yield (green), stable-high vyield (red), and
stable-medium yield (yellow).
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Figure 2. Dendrogram for grouping Sinensis tea clones based on leaf yield under two different

conditions.

Sensory evaluation

The application of N, P, and K had a
nonsignificant effect on taste, aroma, infused
leaf, and overall quality (Table 3); however,
they affected the dry appearance and liquor
color. Based on Tukey’s HSD test, tea clones
I1.1.60 and Yabukita significantly differed for
dry appearance, with scores of 3.27 (1-5) and
4.03 (1-5), respectively (Table 4). Several tea
clones, including clone Yabukita, showed
notably better liquor color (4.13-4.40, bright
greenish-yellow), while clone 1.2.45 scored
4.03 (reddish vyellow/fairly bright). Clone
Yabukita was superior for both traits of dry
appearance and liquor color and had a
premium taste score of 83.00.

DISCUSSION

The principal component analysis (PCA) served
to analyze the genetic variations among the
tea clones based on agro-morphological traits.
This method helps classify the genotypes and
identify the traits and reduces the variables to
support selection (Jolliffe, 2002; Maulana et
al., 2022, 2023). Principal components (PCs)
with eigenvalues > 1 explained 76.72% of the
total variation (Table 2).
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The five PCs captured the key trait
variations. High contribution values, especially
PC1, were evident with trait loadings > 0.5
(Table 5), indicating significant genetic
influence, reflecting distinct agro-morphological
abilities in each clone (Maulana et al., 2023).
This supports findings that PC1 > 0.5 implies a
dominant genetic control (Bouargalne et al.,
2022). The PCA plot also revealed trait
correlations, and the acute vector angles
indicated significant positive relationships, and
obtuse angles expressed negative relationships
(Maxiselly et al., 2024).

Among the 35 tea clones, the traits of
dry appearance and liquor color varied
significantly. In general, dry appearance and
liquor color attained great influences from
chlorophyll, which is the green substance in
leaves that influences the manifestation of dry
appearance and liquor color (Ostadalova et al.,
2015). Clone Yabukita showed the highest
adaptation to fertilization and scored the
topmost values for dry appearance, liquor
color, and taste (83.00 points). Steaming likely
enhanced these traits, aligning with practices
in Japanese tea production (Ikeda, 2018;
Prayoga et al., 2023). Since soil fertility is
manageable, good agricultural practices
support climate adaptation. Evidence-based
strategies and resilient breeding can help
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Table 4. Average value of green tea quality parameters in 35 Sinensis tea clones.

Clones Dry appearance Liquor color Taste Aroma Infused leaf Total value
1.1.70 4.00 3.50 40.00 4.00 4.17 78.83
1.1.93 3.90 3.93 40.33 4.13 4.27 80.63
I.1.100 3.73 4.40 41.67 4.00 4.27 82.60
I.1.101 3.77 3.77 39.67 4.03 4.23 78.80
1.2.34 3.57 3.70 40.00 4.03 4.13 78.13
1.2.45 3.73 3.07 39.33 3.67 4.13 75.33
1.2.85 3.93 3.67 41.00 4.43 4.20 81.07
1.2.188 3.93 3.53 40.00 4.00 4.27 78.93
1.4.113 3.93 3.63 38.00 3.80 4.03 76.37
I1.1.3 3.67 3.73 40.67 4.13 4.10 79.33
11.1.32 3.87 4.13 42.33 4.17 4.33 83.33
11.1.38 3.77 4.20 41.00 4.17 4.23 81.70
I1.1.60 3.27 3.67 41.33 4.17 4.00 78.47
11.1.76 3.50 4.17 38.33 4.17 4.07 77.80
11.1.98 3.97 3.67 38.00 3.90 4.13 76.97
11.2.43 3.73 4.13 40.00 4.40 4.23 80.87
11.2.108 3.93 4.03 43.67 4.17 4.33 84.57
11.2.146 3.90 3.90 37.67 3.80 4.20 77.07
I1.3.16 3.50 3.60 38.67 4.00 4.23 76.43
11.3.38 3.63 3.63 40.67 4.03 4.33 79.20
11.4.149 3.97 4.37 40.33 4.10 4.33 82.20
11.4.32 3.57 4.03 41.33 4.33 4.30 81.40
11.4.178 3.77 4.23 40.00 4.17 4.33 81.00
R1 3.83 3.77 40.67 4.00 4.23 79.93
R3 3.67 4.00 36.67 4.00 4.17 76.00
S1 4.00 3.47 39.33 3.70 4.37 77.87
S2 3.70 3.57 41.00 4.13 4.17 79.40
S3 3.53 3.50 38.00 3.43 4.07 74.10
SGMBA 3.70 3.67 40.67 4.67 4.03 80.17
Yabukita 4.03 4.23 41.00 4.33 4.27 83.00
GMBS 1 3.93 3.67 40.00 3.93 4.13 78.93
GMBS 2 3.90 4.03 42.33 3.87 4.33 82.53
GMBS 3 3.67 4.00 39.67 3.67 4.07 78.13
GMBS 4 3.93 3.77 40.00 4.03 4.20 79.57
GMBS 5 3.77 3.93 39.00 3.67 4.20 77.83
HSD 5% 0.77 0.97 - - - -
Avrage 3.78 3.84 40.07 4.04 4.20 79.39
Minimum 3.27 3.07 36.67 3.43 4.00 74.10
Maximum 4.03 4.40 43.67 4.67 4.37 84.57

Numbers followed by the same letter are not significantly different at HSD = 5%.

maintain quality in stressed conditions (Ahmed
etal., 2019).

Nitrogen uptake efficiency improved
post-fertilization, indicating better absorption
and reduced excess. Adequate macronutrient
availability enhanced growth and quality. In
Japan, over 500 kg/ha of nitrogen boosts
amino acids for better flavor; however, its
overuse risks acidification and pollution (Ikeda,
2018). Mitigation includes controlled-release
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fertilizers, inhibitors, and biochar for higher pH
and efficiency (Wang et al., 2020).

Phosphorus uptake declined, while
potassium incurred enhancement, with a
similar trend observed in past studies (Li et al.,
2015). Their opposing efficiency reflects
different plant responses. Though Ilow
phosphorus may not limit plant growth, its role
in fertility and quality remains vital. Low
phosphorus (P) availability can affect tea
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Table 5. Nutrient uptake efficiency (NUE) and nutrient content in the leaves of 35 Sinensis tea clones.

Clones Weight (kg ha') NUE Nitrogen Content (%) Phosphorus Content (%) Potassium Content (%)
FO F1 Difference Average (%) FO F1 FO F1 FO F1

1.1.70 464.90 559.35 94.44 512.13 25.53 2.79 2.98 0.157 0.149 0.643 0.684
1.1.93 237.47 474.64 237.18 356.05 64.10 2.48 3.10% 0.116 0.129 0.604 0.788*
1.1.100 461.69 505.04 43.35 483.36 11.72 3.26 3.37* 0.185 0.147%* 0.656 0.667*
I.1.101 429.13 468.18 39.06 448.65 10.56 3.32 3.08 0.143 0.143 0.688 0.848*
1.2.34 294.67 310.53 15.87 302.60 4.29 2.82 2.77 0.156 0.134* 0.877 0.853
1.2.45 301.75 314.64 12.89 308.20 3.48 2.97 2.78 0.144 0.139* 0.757 0.658
1.2.85 398.90 463.38 64.48 431.14 17.43 2.66 2.86* 0.152 0.145* 0.775 0.775
1.2.188 471.61 535.00 63.40 503.30 17.14 3.20 3.13 0.197 0.164* 0.710 0.854*
1.4.113 303.81 487.41 183.61 395.61 49.62 2.48 2.77* 0.146 0.162 0.879 0.948%*
I1.1.3 293.39 353.75 60.37 323.58 16.31 2.30 2.59% 0.125 0.152 0.842 0.753
11.1.32 286.99 350.34 63.35 318.67 17.12 2.65 2.74* 0.149 0.121* 0.727 0.747*
11.1.38 379.38 472.67 93.29 426.02 25.21 2.84 2.97* 0.147 0.134* 0.667 0.718%*
I1.1.60 419.52 503.50 83.99 461.51 22.70f 2.94 3.15% 0.160 0.148%* 0.702 0.801%*
11.1.76 506.52 559.16 52.63 532.84 14.23 3.04 3.02 0.158 0.143* 0.714 0.761*
11.1.98 314.72 384.43 69.71 349.58 18.84 2.83 2.83 0.148 0.136* 0.665 0.683*
11.2.43 313.08 426.13 113.05 369.61 30.55 2.61 2.88%* 0.139 0.151 0.626 0.631%*
11.2.108  414.52 428.97 14.44 421.75 3.90 3.01 2.88 0.145 0.131%* 0.725 0.759*
11.2.146  453.55 529.27 75.71 491.41 20.46 2.70 2.85% 0.134 0.132* 0.656 0.686*
I1.3.16 513.19 559.58 46.40 536.39 12.54 2.66 2.86* 0.152 0.135* 0.892 0.955*
11.3.38 226.97 344.25 117.28 285.61 31.70 2.45 2.42 0.134 0.151 0.601 0.795%*
11.4.149 259.35 458.45 199.09 358.90 53.81 2.51 2.79% 0.127 0.132 0.664 0.784*
11.4.32 370.72 422.47 51.75 396.60 13.99 2.74 2.89% 0.151 0.136* 0.836 0.915*
11.4.178 540.03 610.90 70.86 575.46 19.16 2.97 2.98* 0.165 0.164* 0.675 0.742*
R1 434.56 488.75 54.19 461.66 14.64 2.64 2.78* 0.127 0.145 0.583 0.677*
R3 368.03 437.13 69.09 402.58 18.67 2.98 2.88 0.180 0.151%* 0.702 0.845%*
S1 396.87 413.53 16.65 405.20 4.50 2.74 2.56 0.188 0.145%* 0.990 1.090*
S2 378.96 493.04 114.08 436.00 30.83 2.66 2.93% 0.143 0.141* 0.806 0.764
S3 267.37 484.78 217.41 376.08 58.76 2.33 3.13* 0.157 0.145* 0.897 1.230%*
SGMBA 314.02 391.24 77.21 352.63 20.87 2.81 2.77 0.166 0.161%* 0.673 0.740%*
YABUKITA 251.46 357.71 106.25 304.58 28.72 3.09 3.17* 0.182 0.169* 0.638 0.653*
GMBS 1 448.23 546.26 98.03 497.25 26.50 2.83 2.96* 0.148 0.138* 0.607 0.797*
GMBS 2 468.77 559.58 90.82 514.18 24.54 2.89 2.80 0.131 0.129* 0.626 0.702*
GMBS 3 253.43 459.00 205.57 356.22 55.56 2.57 2.85% 0.146 0.145%* 0.735 0.863*
GMBS 4 406.59 495.83 89.25 451.21 24.12 2.85 2.97* 0.142 0.156 0.589 0.784%*
GMBS 5 382.02 465.37 83.36 423.70 22.53 2.76 2.94% 0.132 0.153 0.775 0.642
HSD 5%  341.18 - 114.2 346.83 30.87 - - - - -

Average 372.18 460.41 88.23 416.29 23.85 2.782 2.898 0.116 0.151 0.144 -0.006
Minimum  226.97 310.53 12.89 285.61 3.48 2.300 2.420 -0.240 0.116 0.121 -0.043
Maximum 540.03 610.90 237.18 575.46 64.10 3.320 3.370 0.800 0.197 0.169 0.027

Numbers followed by the same letter are not significantly different at HSD = 5%. FO = Before fertilization application, F1 =

After fertilization application, NUE = Nutrient uptake efficiency, *

significant decrease in phosphorus.

genotypes both physiologically and
biochemically. Phosphorus plays a key role in
energy metabolism, root development, and the
synthesis of nucleic acids and secondary
metabolites. Its deficiency reduces shoot
growth, nutrient uptake, and the accumulation
of quality-related compounds, such as
catechins and theaflavins (Zhang et al., 2023).
Potassium influences leaf yield and quality,
depending on the soil potassium content. A
mixed-effects model revealed that quality
depends upon applied and available K, while
leaf yield gained more influences from tea
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significant increase in nitrogen and potassium, a

genotype types (Xi et al., 2023). Nutrient
impact on secondary metabolism varies
regionally, emphasizing tailored nutrient
management. The availability and type of
nutrients significantly influence secondary
metabolic activity in tea plants, particularly
impacting the production of quality compounds
like catechins and tannins. Specifically,
macronutrients like N, P, and K are crucial in
tea plant growth and the synthesis of these
desirable metabolites (Luo et al., 2024).

Leaf yield per hectare varied among
the 35 clones, as affected by fertilization being
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a major yield driver (Tabu et al., 2015). Being
a quantitative trait, leaf yield reflects gene-
environment interactions. Nutrients support
the growth of young tea shoots by increasing
photosynthesis, protein synthesis, and energy
transport. Phenotypic expression includes
environmental variation (Stansfield, 1991).
Rahadi et al.’s (2016) findings revealed the
yield-related diversity ranging from 27.77% to
51.83% coefficient of variation. Similarly,
shoot weight attained alterations by the PCA in
Sri Lankan tea clones (Kottawa-Arachchi et al.,
2017).

Parametric and non-parametric
analysis grouped the tea clones into four
dendrogram-based clusters, i.e., unstable
medium vyield (blue), unstable low vyield
(green), stable high vyield (red), and stable
medium yield (yellow) (Figure 2). This
approach effectively identified the promising
barley genotypes (Vaezi et al., 2019) and has
also been applicable in crops like rice, soybean,
and sweet potato (Wijaya et al., 2022; Utami
et al., 2023; Maulana et al., 2022). The tea
clones in the red cluster showed promise for
stable leaf yields under various conditions,
while the tea clones in the green cluster
performed poorly. Therefore, unstable tea
clones may require environment-specific
development strategies.

CONCLUSIONS

Tea clones displayed broad agro-morphological
diversity. In general, all clones have the same
quality in terms of taste value. Clones 1.1.93,
I1.4.149, and S3 have an NUE greater than

50%. Leaf analysis showed that
macronutrients, such as nitrogen and
potassium, increased, while phosphorus

decreased in the leaves.
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