SABRAO Journal of Breeding and Genetics 57 (5) 2057-2068, 2025 http://doi.org/10.54910/sabrao2025.57.5.26 http://sabraojournal.org/pISSN 1029-7073; eISSN 2224-8978

MORPHOLOGICAL CHARACTERISTICS OF THE PITCHER PLANT (NEPENTHES SPP.) IN LAMPUNG, INDONESIA

D. ASADUDIN, MAHFUT*, S. WAHYUNINGSIH, N. NURCAHYANI, F.R. LUMBANRAJA, and B. IRAWAN

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Lampung, Indonesia

*Corresponding author's email: mahfut.mipa@fmipa.unila.ac.id

Email addresses of co-authors: davidasadudin0@gmail.com, sri.wahyuningsih@fmipa.unila.ac.id,
nuning.nurcahyani@fmipa.unila.ac.id, favorisen.lumbanraja@fmipa.unila.ac.id, bambang.irawan@fmipa.unila.ac.id

SUMMARY

Pitcher plants (Nepenthes sp.) have significant genetic diversity, necessitating their identification in Indonesia. Lampung Province provides suitable habitat for pitcher plants, specifically in the areas of Kebun Raya Liwa, West Lampung Regency, and Balik Bukit District, Indonesia. The specific species of pitcher plants in Kebun Raya Liwa have not reached identification. Therefore, this research aimed to identify the pitcher plants in the regions. Based on the study findings, 13 accessions of pitcher plants exhibited varied morphological characteristics, with the stem length, leaf shape, leaf length, pitcher shape, and pitcher color identified as the most influential traits. The study successfully classified these 13 accessions into three species: *N. reinwardtiana*, *N. mirabilis*, and *N. gracilis*.

Keywords: Pitcher plant (*Nepenthes* sp.), genetic resources, diversity, characterization, morphological traits, Lampung

Key findings: The 13 pitcher plant (*Nepenthes* sp.) accessions expressed considerable genetic variations based on morphological traits. In the identification of all the pitcher plant accessions, three types of species emerged, namely, *N. reinwardtiana*, *N. mirabilis*, and *N. gracilis*.

Communicating Editor: Dr. Himmah Rustiami

Manuscript received: January 07, 2025; Accepted: Mary 02, 2025. © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2025

Citation: Asadudin D, Mahfut, Wahyuningsih S, Nurcahyani N, Lumbanraja FR, Irawan B (2025). Morphological characteristics of the pitcher plant (*Nepenthes* spp.) in Lampung, Indonesia. *SABRAO J. Breed. Genet.* 57(5): 2057-2068. http://doi.org/10.54910/sabrao2025.57.5.26.

INTRODUCTION

The pitcher plant (Nepenthes sp.) is a widely distributed ornamental across Indonesia and exhibits significant genetic diversity (IUCN, 2013). This plant possesses unique and beautiful shapes with modifications in the leaf tips, earning it the name 'pitcher plant' (Nainggolan et al., 2020). Indonesia is home to 64 pitcher plant species, of which 59 are endemic (Fitmawati et al., 2023). According to Amanda et al. (2019), pitcher plant distribution in Indonesia spread across several islands-Sumatra (34 species, 24 endemic); Java (three species, two endemic); Sulawesi (11 species, seven endemic); Maluku (three species); Papua (11 species, seven endemic); and Kalimantan in Indonesia (32 species).

To date, 103 species of pitcher plants have become known and documented (Mansur et al., 2023). In several previous studies carried out at the Sambas Botanical Garden, Subah District, Sambas Regency, the identified species included N. ampullaria Jack, N. reinwardtiana Jack, N. rafflesiana Jack, N. x and N. mirabilis hookeriana, Druce (Hairunnisah et al., 2018). The research conducted in Bukit Batu Village, Sungai Kunyit District, also revealed four species of pitcher plants, i.e., N. ampullaria, N. bicalcarata, N. gracilis, and N. rafflesiana (Kristianus et al., 2018). Furthermore, research on determining pitcher plant types (Nepenthes spp.) in the Mount Asuansang Nature Tourism Park area, Paloh District, Sambas Regency, identified five pitcher plant species. These are N. ampullaria Jack, N. gracilis Korth, N. mirabilis (Lour.) Druce, N. rafflesiana Jack, and N. echinostoma (Mardianto et al., 2015).

The presence of pitcher plants in the Liwa Botanical Garden, originating from their habitat in Lampung, faces conservation challenges primarily due to their insufficient identification and exploration. The immediate discovery and survey of these species are crucial. The identification method can proceed through morphological characterization (Aritonang et al., 2024; Putra et al., 2024), anatomical studies (Asadudin et al., 2024; Mahfut et al., 2023a;), and molecular analysis (Anbiya et al., 2024; Mahfut et al., 2024b;

2025a). According to Rasyid and Widya (2020), the initial identification of plants generally depended on morphological parameters.

Dancak et al. (2022) mentioned that morphological identification progressed by observing the structure and shape of the roots, stems, leaves, flowers, fruits, and seeds. Simbolon et al. (2021) reported morphological recognition (Mahfut et al., 2021b; 2021c; 2023c; 2023d; 2025b) of pitcher plants continued by assessing the characteristics of the leaves, stems, and traps. Therefore, the following research sought to identify the types of pitcher plants in Lampung, Indonesia. Moreover, the outcome of this study could serve as the foundation for appropriate conservation (Mahfut et al., 2025b; 2025c; 2025d; 2025e) efforts based on their presence and environmental suitability (Nuraini et al., 2024; Sari et al., 2024).

MATERIALS AND METHODS

Morphological characteristics

The collection of pitcher plant accessions transpired at the Kebun Raya Liwa, Indonesia. The observations based on morphological characters of pitcher plants proceeded on 38 morphological characteristics of stems, leaves, and pitchers, following the methodology in past studies (Wardana, 2019; Fitmawati *et al.*, 2023) (Table 1).

Data analysis

Data on the morphological characteristics of local Lampung Nepenthes accessions sustained qualitative and quantitative analyses. Qualitative data was in a descriptive presentation, while quantitative data resulted in scoring, converting into binary data, and then reconstructing a kinship tree based on the principal component analysis (PCA) using the Multivariate Statistical Package MVSP software (Mahfut et al., 2023a, 2023b, 2024a, and 2024b). The pitcher plant accessions' identification succeeded in matching their morphological traits with the Nepenthes plant book.

Table 1. Characterization of the *Nepenthes* accessions.

No	Characters	Information			
Stem	and leaf morphology				
1.	Stem growth direction Climb (Scandens)				
2.	Stem type	Monocaulis monocarpi			
3.	Stem height	2.8 – 3 m			
4.	Stem diameter	6.8 – 8.5 mm			
5.	Stem shape	Round (teres)			
6.	Bar surface	Slippery			
7.	Leaf length	18 – 26 cm			
8.	Leaf width	4.5 – 7 m			
9.	Petiole length	4 – 6.5 cm			
10.	Leaf shape	Lancet (lanceolatus)			
11.	Leaf edges	Flat (integer), smooth hair			
12.	Leaf tip	Acute (acutus)			
13.	Leaf base	Tapered (acuminatus)			
14.	Leaf growth	Pinnate (pinnatus)			
15.	Leaf surface	Slippery (leavis)			
16.	Color of the upper surface of the leaf	Green, reddish			
17	Color of the lower surface of the leaf	Light green, reddish			
18.	Petiole color	Green, reddish green			
Pitche	r				
1.	Pitcher shape	Waist			
2.	Pitcher height	12 – 16 cm			
3.	Pitcher color	Yellowish green with red stripes and green with			
		red spots			
4.	Shape of the pitcher lid	Oval (ovatus)			
5.	Pitcher closure color	Red, green with red spots			
6.	Pitcher closure length	2.3 – 3.5 cm			
7.	Width of pitcher flap	1.8 – 3 cm			
8.	Shape of the mouth of the pitcher	Heart (cordatus)			
9.	Length of the mouth of the pitcher	2.8 – 3.5 cm			
10.	Width of the mouth of the pitcher	2.5 – 3 cm			
11.	Peristome thickness	0.3 – 0.4 cm			
12.	Peristome color	Yellowish green with red stripes, green with red			
		stripes			
13.	Spur length	0.3 mm			
14.	Spurs color	Redness			
15.	Wing	Not yet			
16.	Length of tendrils	8 – 16 cm			
17.	Tendrils color	Yellowish green, and green			
18.	Position of tendrils	Behind			

RESULTS AND DISCUSSION

Morphological characteristics

The results based on field observations of the *Nepenthes* accessions collected in Lampung revealed several *Nepenthes* species lacked pitchers and, overall, expressed considerable genetic diversity. Furthermore, the 13 *Nepenthes* accessions' analysis used the following morphological characteristics:

Nepenthes-1 had the characteristics of a climbing stem, monocaulis monocarpi stem type, stem height of 60 + 4 cm, round stem shape, and smooth stem surface. The leaf length was 12 + 0.8 cm, and the width was 3 + 0.2 cm. The leaf descriptions are as follows: straight shape, flat edge, pointed leaf tip, tapered leaf base, pinnate leaf spine, smooth leaf surface, green upper leaf surface, and light green lower leaf surface on the green stem. The next description is on the waist of the

pitcher: height of 8+0.4 cm, green shade, with oval, green flap shape, pitcher flap length (2.8+0.2 cm), pitcher flap width (1.5+0.1 cm), tall pitcher mouth shape, pitcher mouth length (2.8+0.2 cm), and width at 1.5+0.1 cm.

Nepenthes-2 owned the characteristics of a climbing stem, monocaulis monocarpi stem type, stem height (35 + 2 cm), and round and smooth stem surface. The leaf description comprised length and width at 12 + 0.7 and 3 + 0.2 cm, respectively; a straight shape; a flat leaf edge; a pointed leaf tip; a tapered leaf base; a pinnate leaf spine; a smooth leaf surface; a green upper surface and light green lower surface of the leaf; and the color of the stem is green. The shape of the waist pitcher included the height at 8 + 1 cm, the green shade of the pitcher, the oval shape of the pitcher flap, the green pitcher flap, the pitcher flap length at 4 + 0.4 cm, the width at 3 + 0.2 cm, and the pitcher mouth shape is tall, with the length at 4 + 0.2 cm and the width at 3 + 0.2 cm.

The recorded Nepenthes-3 had the following characteristics: climbing monocaulis monocarpi stem type, stem height (8 + 1 cm), and a round and smooth stem surface. The leaf length was 12.5 + 2 cm, the leaf width was 3.5 + 0.2 cm, and the leaf shape was lanceolate. The leaf edge was flat, with a pointed tip, tapered base, and pinnate spine. The leaf surface was smooth, with a green upper and lower surface, and the color of the leaf stalks was green. The shape of the waist pitcher consisted of a pitcher height (8.5 + 2 cm), a green pitcher, a pitcher flap shape oval, a green flap, a flap length (2.5 + 0.2 cm), and a flap width of 1.8 + 0.1 cm. Its mouth shape is tall, with a pitcher mouth length of 2.5 + 0.2 cm and a pitcher mouth width of 1.8 + 0.1 cm.

Nepenthes-4 characteristics were climbing stem, monocaulis monocarpi stem type, stem height (45 + 4 cm), and round and smooth stem surface. The leaf description has the following: the length was 13 + 2 cm, the width was 3 + 0.2 cm, the shape of the leaf was lanceolate, and the leaf edge was flat, with a pointed tip and tapered base. The leaf spine was pinnate, and the leaf surface was smooth,

with a green upper surface, a light green lower surface, and a green stalk of leaves.

Nepenthes-5 characteristics consisted of climbing stems, monocaulis monocarpi stem type, stem height (115 + 6 cm), round stem shape, and smooth stem surface. The leaf length and width are 15 + 2 and 3 + 0.2 cm, respectively. The leaf shape is lanceolate, with a flat leaf edge, pointed leaf tip, and tapered base of the leaf. Moreover, the leaf spines are pinnate, the leaf surface is smooth, the color of the upper surface of the leaf is green, while the lower surface is light green, and there is a green leaf stalk. For the shape of the waist pitcher, the height is 14 + 2 cm, the pitcher color is reddish green, the shape of the pitcher cover is oval, and the pitcher cover is red. The length of the pitcher cover is 3 + 0.2 cm, the pitcher cover width is 1.5 + 0.1 cm, the shape of the pitcher mouth is tall, and the length and width are 3 + 0.3 and 1.5 + 0.1 cm, respectively.

Nepenthes-6 appeared the with following descriptions: climbing stem, monocaulis monocarpi stem type, stem height (156 + 8 cm), and round stem shape with smooth surface. The leaf features include length and width at 11 + 2 and 3 + 0.2 cm, respectively; a lanceolate leaf shape, a flat edge, a pointed leaf tip, and a tapered base of the leaf. Furthermore, the spine of the leaf is pinnate, the surface is smooth, the upper and lower surfaces are green, and the leaf stalk is also green. As for the shape of the waist pitcher, the height is 8 + 1 cm, the pitcher color is green, the pitcher flap shape is oval colored green, and the flap's length and width are 1 + 0.1 cm each. Additionally, the shape of the pitcher mouth is tall, with a length of 1 + 0.1 cm and a width of 1 + 0.1 cm.

Nepenthes-7 has distinct climbing stems, a monocaulis monocarpi stem type, and a round stem shape with a smooth surface. The leaf width is 4+0.8 cm, straight-shaped, flat-edged, with a pointed leaf tip, a tapered leaf base, pinnate leaf spines, and a smooth leaf surface, with green upper and lower surfaces of the leaves. For the waist pitcher, the height is 3+0.3 cm, and the color of the pitcher is red.

Nepenthes-8 comprised features of climbing stems, a monocaulis monocarpi stem type, and a round stem shape with a smooth surface. The leaf width is 5 + 0.2 cm, and the leaf shape is lanceolate, with a flat edge, a pointed leaf tip, a tapered leaf base, and pinnate spines. The leaf surface is smooth, with green upper and lower surfaces of leaves and a green leaf stalk. Descriptions for the shape of the waist pitcher are as follows: the height is 9 + 1 cm, the color is reddish green, the shape of the pitcher lid is oval, the pitcher flap color is red, and the length and width of the pitcher flap are the same at 1 + 0.1 cm. Meanwhile, the shape of the pitcher mouth is tall, with the length and width both at 1 + 0.1cm.

Nepenthes-9 revealed the characteristics of a climbing stem, monocaulis monocarpi stem type, and round stem shape with a smooth surface. The leaf shape is lanceolate with a flat edge, a pointed tip, a tapered base, and a pinnate spine. In addition, the leaf surface is smooth, the upper surface is green, and the lower surface is light green, with a green leaf stalk. Describing the shape of the waist pitcher includes a height of 5 + 0.9cm, a green color, an oval shape of the pitcher, and a colored green flap. The length and width of the pitcher flap are 2 + 0.1 and 1.5 + 0.1cm, respectively, and the tall shape of the pitcher mouth has a length of 2 + 0.1 cm and a width of 1.5 + 0.1 cm.

Nepenthes-10 is descriptive of climbing stems, a monocaulis monocarpi stem type, and a round stem shape with a smooth surface. For the leaf, it has a lanceolate shape, flat edge, pointed tip, tapered base, and pinnate spine. Moreover, the leaf surface is smooth, the upper leaf surface is green, the lower surface is light green, and the leaf stalk is green. The shape of the pitcher's waist has a height of 4 + 0.4 cm, the color is reddish green, and the cover shape is oval and colored green. The pitcher cover's length and width measure 1 + 0.1 cm each, with a tall mouth shape with a length and width both at 1 + 0.1 cm.

Nepenthes-11 was visible with the following characteristics: a climbing stem, a monocaulis monocarpi stem type, and a round stem shape with a smooth surface. The leaf

features comprised a straight shape, a flat leaf edge, a pointed tip, a tapered base, a pinnate spine, a smooth leaf surface, and the upper and lower green surfaces, with a green-colored stalk. Meanwhile, the pitcher's waist shape has a height of 7+1.5 cm, a green shade, an oval shape of the pitcher flap colored green, the flap length at 2+0.1 cm, and the flap width is 1.5+0.1 cm. The pitcher mouth shape is tall and has a length of 2+0.1 cm and a pitcher mouth width of 1.5+1.5 cm.

Nepenthes-12 owned characteristics of a climbing stem, a monocaulis monocarpi stem type, and a round stem shape with a smooth surface. Its leaf shape is straight, with a flat leaf edge, pointed leaf tip, tapered leaf base, and a pinnate leaf spine. The leaf surface is smooth, with green upper and lower leaf surfaces, and the leaf stalk is green. Moreover, the waist of the pitcher has a height of 8+1.5 cm, a green pitcher, an oval-shaped pitcher flap that is green, and a flap length and width of 1.5+0.1 cm each. The pitcher mouth shape is tall, with both length and width of 1.5+0.1 cm each.

Nepenthes-13 is distinct with a climbing stem growth direction, monocaulis monocarpi stem type, and round stem shape with a smooth surface. The leaf shape is straight, with a flat edge, pointed tip, tapered leaf base, and pinnate leaf spine. The leaf surface is smooth, colored green on the upper and lower surfaces of leaves, and a green leaf stalk. For the waist pitcher description, pitcher height is 6+1.2 cm, pitcher color is green, pitcher flap shape is oval colored green, pitcher flap length and width measure at 1+0.1 cm each, with a tall pitcher mouth shape, and both length and width of the pitcher mouth at 1+0.1 cm.

variations The observed in morphological characteristics among Nepenthes accessions could be due partly to environmental factors, such as sunlight, humidity, and temperature. According to Clarke (2001), some species of Nepenthes were notably capable of surviving in full and direct sunlight conditions. Furthermore, the altitude showed a close association with environmental temperature. In highland areas, the temperature tends to be lower than in lowland areas. Mansur *et al.* (2021) reported that lowland *Nepenthes* typically live at temperatures ranging from 20 °C to 35 °C, while those in the highland, *Nepenthes* species prefer temperature ranges of 10 °C–30 °C. Morphological diversity in *Nepenthes* also revealed influences coming from various genetic factors. Lukmanasari *et al.* (2020) mentioned that morphological traits receive regulations from several genes, and each gene affects the traits' expression (phenotype) individually and collectively, resulting in substantial diversity in *Nepenthes*.

Kinship tree dendrogram based on morphological characters

The analysis of kinship relationships among different plant species can determine the degree of similarity by constructing a kinship dendrogram and calculating the correlation and coefficient of the similarity index and taxonomic distance through cluster analysis. In general, these measurements aim to quantify the similarity between the plant species compared several characteristics on (Yudaputra, 2021). Based on the morphological characteristics of 13 Nepenthes accessions, a kinship tree dendrogram construction was successful (Figure 1). The dendrogram displayed a considerable difference among each Nepenthes accession. Nep 12 was morphologically closest to Nep 9 because it is

in one line. Meanwhile, the other Nepenthes accessions appeared on the different branches. possibly due to incomplete plant parts, such as missing pitchers or stems during sampling. A line drawn at a similarity value of two indicated four clusters, similar or <80% (Figure 1). Asadudin et al. (2024) similarly revealed that the kinship relationship among the 14 banana cultivars with the same genome has a coefficient value of <0.80, indicating a distant kinship relationship. Cluster 1 consists of Nep 13, Nep 7, and Nep 4. Cluster 2 comprised Nep 2, and cluster 3 consisted of Nep 5. Meanwhile, cluster 4 includes Nep 8, Nep 1, Nep 6, Nep 10, Nep 12, Nep 9, and Nep 3. Accessions grouped within the same cluster indicated a close relationship, while those in different clusters seemed distantly related (Figure 1).

Principal component analysis (PCA)

The principal component analysis (PCA) based on morphological characters of the different *Nepenthes* accessions appears in Figure 2. From the principal component analysis, the 13 *Nepenthes* accessions underwent further division into two clusters. Cluster I consisted of *Nep* 4, *Nep* 12, and *Nep* 7, while cluster II consisted of *Nep* 1, *Nep* 2, *Nep* 3, *Nep* 5, *Nep* 6, *Nep* 8, *Nep* 9, *Nep* 10, *Nep* 11, and *Nep* 13. The direction of the arrow toward a group indicates the most influential morphological characteristics in that group (Figure 2).

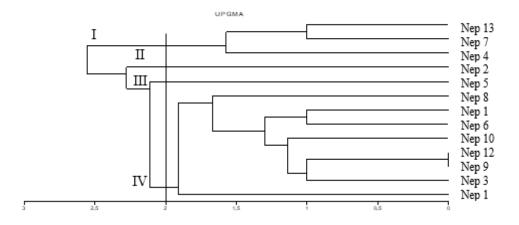
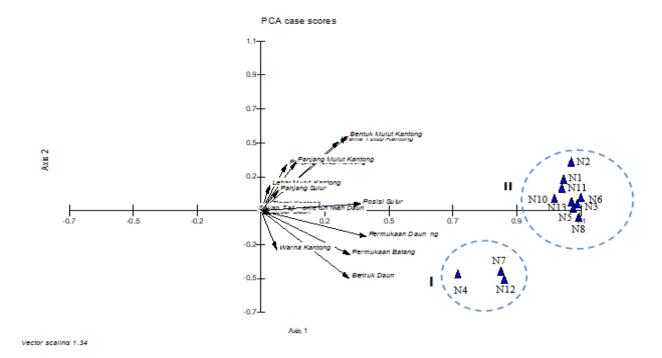



Figure 1. Dendogram of 13 Nepenthes accessions based on morphological characters.

Figure 2. Principal component analysis (PCA) on 13 *Nepenthes* accessions based on morphological characters.

According to Putera et al. (2024), the morphological features that most influence a group are indicative of the length and direction of the arrow, where the length of the arrow is directly proportional to the morphological character. The morphological attributes significantly influencing the grouping of 13 Nepenthes accessions were the leaf shape, stem surface, leaf surface, pitcher lid color, and pitcher lid shape (Table 2). These morphological traits effectively distinguished Nepenthes accessions on principal components PC1 and PC2.

The main component that has an eigenvalue (>2) contributes significantly to cluster differentiation (Mahfut *et al.*, 2023a). Axis-I contributed 87.16% of the variation in the morphological characteristics, with an eigenvalue of 13.873, while axis-II contributed 91.825%, with an eigenvalue of 4.666 (Table 3). The size of the eigenvalue provides the influence of each character, which can be visible from the length of the projection formed (Table 2).

Nepenthes species identification

Variation in pitcher shape and color among Nepenthes accessions can be effective as a basis for classifying different species. Each species has morphological traits distinguish it from others (Selviana et al., 2018). After observing the morphological characteristics of the pitcher, stem, and leaves, identification proceeded based on the differences of their respective characteristics, with three types of species obtained. Then, validating the three identified species through clustering used the PCA analysis and kinship dendrogram (Septiana et al., 2024; Simamora et al., 2024), which showed each was in a different cluster. The types of identification results are available in Table 3, and pictures of four different types of Nepenthes occur in Figure 3.

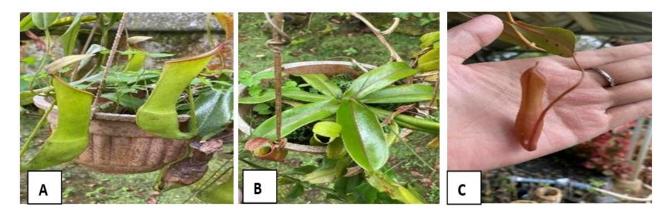

In this study, the species *N. reinwardtiana* was evident with the following characteristics: a stem length of 35 + 2 cm, lance-shaped leaves with a length of 3 + 0.4 cm, oval-shaped pitchers, and green-colored

Table 2. The characters' role in the grouping of *Nepenthes* accessions.

Characters	PCA 1	PCA 2
Stem growth direction	0.277	-0.129
Rod type	0.277	-0.129
Stem shape	0.277	-0.129
Bar surface	0.234	-0.219
Leaf width	0.023	-0.017
Leaf shape	0.232	-0.337
Leaf tip	0.277	-0.129
Leaf base	0.277	-0.129
Leaf repetition	0.277	-0.129
Leaf surface	0.277	-0.129
Pitcher shape	0.227	0.369
Pitcher height	0.023	0.024
Pitcher color	0.041	-0.195
Pitcher close shape	0.227	0.369
Pitcher close color	0.204	0.345
Pitcher close length	0.068	0.231
Pitcher lid width	0.023	0.126
Pitcher mouth shape	0.227	0.369
Pitcher mouth length	0.091	0.242
Pitcher mouth width	0.023	0.126
Eigenvalues	13.873	0.743
Percentage	87.159	4.666
Cum. percentage	87.159	91.825

Table 3. Types and differences in the various accessions of *Nepenthes*.

Accessions	Туре	Stem length	Leaf shape	Leaf length	Pitcher shape	Pitcher color
Nepenthes 1	N. reinwardtiana	35 + 2 cm	lancet	3.0 + 0.4 cm	Oval	Green
Nepenthes 2	N. mirabilis	38 + 3 cm	lancet	12.5 + 0.7 cm	Oval	Red
Nepenthes 3	N. gracilis	30 + 1 cm	straight	11.0 + 0.8 cm	Waist	Red

Figure 3. Identification of *Nepenthes* accessions in Lampung: A) *N. reinwardtiana*, B) *N. mirabilis*, and C) *N. gracilis*.

pitchers (Table 3). These results were in accordance with the research of Simbolon *et al.* (2021), which reported *N. reinwardtiana* has a small, green, triangular-shaped stem; green, lance-shaped leaves with smooth edges and green veins, without a leaf stalk. Gusdiarto *et al.* (2018) also stated *N. reinwardtiana* has a small, triangular-shaped stem, colored green. The leaves were green, with smooth edges, clearly visible veins, and a lance-shaped form.

Study results show the species N. mirabilis has the following characteristics: a stem length of 38 + 3 cm; lance-shaped leaves with a length of 12.5 + 0.7 cm; oval-shaped pitchers; and red-colored pitchers. These findings aligned with Wardhani (2019), who inventoried N. mirabilis (Lour.) in peatlands with the following characteristics: leaf length of about 15 cm, lance-shaped leaves with a stalk approximately 30 cm long, and red pitchers with an oval shape. Mardhiana et al. (2012) reported the sandy soil habitat showed that N. mirabilis has a cylindrical stem and thin leaves that were oval to lance-shaped and colored green. The leaves have petioles, smooth edges, and fine hairs, with a length of about 30 cm and a width of 7 cm. This Nepenthes has excellent adaptability, allowing it to prevail in various locations. Listiawati and Siregar (2008) declared the widespread distribution of N. mirabilis in Southeast Asia and in Indonesia, where it can be dominant in the regions of Sumatra, Java, Kalimantan, Sulawesi, Maluku, and Papua.

The observed *N. gracilis* has the following features: a stem length of 30 + 1 cm, lance-shaped leaves with a length of 11 + 0.8 cm, waist-shaped pitchers, and red-colored pitchers. These results agreed with the findings of Wardhani (2019), who stated *N. gracilis* has a triangular-shaped stem, lance-shaped leaves with a length of about 10 cm, cylindrical pitchers that were red, and flower colors ranging from light brown to dark brown. This *Nepenthes* can survive in lowland areas; however, it was also possible to grow in midland areas (Clarke, 2001).

CONCLUSIONS

The 13 Nepenthes accessions showed considerable varied morphological characters. The PCA analysis indicated the 13 accessions underwent further division into two clusters. The morphological traits with the highest influence were the stem length, leaf shape, leaf length, pitcher shape, and pitcher color. The identification results obtained three types of pitcher plant, namely, N. reinwardtiana, N. mirabilis, and N. gracilis.

ACKNOWLEDGMENTS

The authors thank the Direktorat Penelitian dan Pengabdian Kepada Masyarakat, Direktorat Jenderal Riset dan Pengembangan, Kementerian Pendidikan Tinggi, Sains, dan Teknologi, which has funded the completion of this research through the Penelitian Tesis Magister (PTM) in 2025, with the contract number 076/C3/DT.05.00/PL/2025. This research is an implementation of the Cooperation Agreement with the Liwa Botanical Garden partner through the Environmental Agency of West Lampung Regency under Agreement No. 660/246/III.14/2021 and 1605/UN.26.17/KS.00/2021.

REFERENCES

Amanda MS, Dwi A, Abdullah M (2019). Diversity of types of pitcher plant (*Nepenthes* spp.) in land cover of shrubs and secondary forests in Gemuruh Hamlet, East Selakau District, Sambas Regency. *J. Hutan Lestari*. 7(2): 844–856. https://doi.org/10.26418/jhl.v7i2.34087.

Anbiya L, Mahfut, Wahyuningsih S, Suratman (2024). Optimum temperature for detection of TrAP and Rep genes using SPG1/SPG2 primer design on red chili (*Capsicum annuum* L.). The 3rd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2022. *AIP Conf. Proc.* 2970: 050034. https://doi.org/10.1063/5.0208192.

Aritonang LL, Mahfut, Ahyar AN (2024).

Acclimatization of five comercial varieties of sugarcane (Saccharum officinarum L.) at PT.

- Gunung Madu Plantations, Lampung. The 3rd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2022. *AIP Conf. Proc.* 2970: 050004. https://doi.org/10.1063/5.0208181.
- Asadudin D, Mulya IP, Nugraha MA, Hasanudin SNA, Mahfut, Susiyanti E, Ahyar AN (2024). Anatomic characterization of 24 mutant varieties of GMP6 in PT. Gunung Madu Plantations. The 3rd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2022. AIP Conf. Proc. 2970: 050039. https://doi.org/10.1063/5.0208463.
- Clarke C (2001). *Nepenthes* of Sumatera and Peninsular Malaysia. *Natural Publication* (Borneo). 11(5): 2–6.
- Dancak M, Majesky L, Cermak V, Golos MR, Płachno BJ, Tjiasmanto W (2022). First record of functional underground traps in a pitcher plant: *Nepenthes pudica* (Nepenthaceae), a new species from North Kalimantan, Borneo. *Phyto. Keys* 23(201): 77–97. https://doi.org/10.3897/phytokeys.201.8287.
- Fitmawati, Sartika, Juliantari E (2023). Diversity of pitcher plants (*Nepenthes* spp.) in Riau Archipelago Province, Indonesia. *SABRAO J. Breed. Genet.* 55(3): 927–939. http://doi.org/10.54910/sabrao2023.55.3.27.
- Gusdiarto, Astiani D, Herawatiningsih R (2018). The diversity of species and growing conditions of pitcher plants (*Nepenthes* spp.) in the forest area of Mount Selindung, Twi Mentibar Village, Selakau Subdistrict, Sambas Regency. *J. Hutan Lestari* 6(2): 371–385.
 - https://doi.org/10.26418/jhl.v6i2.25944.
- Hairunnisah, Dewantara I, Ardian H (2018). Diversity of pitcher plant types (*Nepenthes* Spp) in the Sambas Botanical Garden, Subah District, Sambas Regency, West Kalimantan. *J. Hutan Lestari* 6(3): 519–525. https://doi.org/10.26418/jhl.v8i1.39388.
- IUCN (2013). Red List. http://www.iucnredlist.org.html.
- Kristianus, Dwi A, Ratna H (2018). Diversity of pitcher plant species (*Nepenthes* spp) in various secondary forest cover conditions in Bukit Batu village, Sungai Kunyit subdistrict, Mempawah district. *J. Hutan Lestari* (2): 318–328. https://doi.org/10.26418/jhl.v6i2.25592.
- Listiawati A, Siregar C (2008). Pitcher Plant (Nepenthes) Originating from West Kalimantan. Pontianak: Untan Press.
- Lukmanasari P, Purwantoro A, Murti RH, Zulkifli (2020). Similarity level of *Nepenthes* spp.

- based on the qualitative characters. *J. Ilmu Pertanian* 5(3): 140–149. https://doi.org/10.22146/ipas.55728.
- Mahfut, Ananda M, Susiyanti E, Agustina R (2025a). Screening of sugarcane commercial GMP varieties tolerant to drought stress based on molecular detection of P5CS gene. *J. Multidiscip. Appl. Nat. Sci.* 5(1): 119–129. https://doi.org/10.47352/jmans.2774-3047.233.
- Mahfut, Hidayat MM, Arifannisa SJ (2023a). Study of orchid resistance induction using Rhizoctonia against ORSV infection based on anatomical characteristics of roots and leaves. *Asian J. Plant Sci.* 22(2): 239-249. https://doi.org/10.3923/ajps.2023.239.249.
- Mahfut, Kendari P, Bangsawan R, Susiyanti E (2024a). Agronomic characteristics of sugarcane cultivar GMP3 mutants induced through colchicine. *SABRAO J. Breed. Genet.* 56(3): 1083–1094. http://doi.org/10.54910/sabrao2024.56.3.16.
- Mahfut, Kendari P, Susiyanti E, Ahyar AN, Bangsawan R (2024b). Molecular characterization of the sugarcane cultivar GMP3 mutants induced through colchicine using PCR-RAPD markers. SABRAO J. Breed. Genet. 56(3): 940-950. http://doi.org/10.54910/sabrao2024.56.3.4.
- Mahfut, Kendari P, Syarif A, Wahyuningsih S, Susiyanti E (2023a). Stomata characters of sugarcane (*Saccharum officinarum* L.) mutants of GMP3 variety at PT Gunung Madu Plantations, Lampung, Indonesian. *J. Trop. Biodivers. Biotechnol.* 8(3): 1–12. https://doi.org/10.22146/jtbb.79860.
- Mahfut, Panjaitan, M.V.T., Wahyuningsih, S., Handayani, T.T., Sukimin (2021b).

 Identification of Disease and Efforts to Protect Natural Orchid Plants Against Fungi Infection in the Liwa Botanical Garden.

 IJESTY. 1(1): 30–35. https://doi.org/10.52088/ijesty.v1i1.39.
- Mahfut, Riniarti M, Kurniawaty E (2025a).

 Morphology and phytochemical characterization of native Dendrobium used as a herbal medicine In Lampung, Indonesia. SABRAO J. Breed. Genet. 57(2): 587-598.
 - http://doi.org/10.54910/sabrao2025.57.2.17.
- Mahfut, Sari HE, Kendari P (2024b). Habitat identification and phenetic analysis of Bryophyta in Lampung, Indonesia. The 3rd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2022. AIP Conf. Proc. 2970: 050014. https://doi.org/10.1063/5.0208187.

- Mahfut, Sari M, Akin HM, Wahyuningsih S, Irawan B (2025b). Molecular characterization and effectiveness cross-protection of weak strains against super-infection malignant strains Cucumber mosaic virus (CMV) on cayenne pepper (*Capsicum annuum* L.) in Lampung, Indonesia. *J. Trop. Plant Pests Dis.* 25(1): 63-75. https://doi.org/10.23960/jhptt.12563-75.
- Mahfut, Sari VDA, Widyawan A, Wahyuningsih S, Irawan B (2025d). Phenotypic stability of mutant sugarcane (*Saccharum officinarum* L.) tolerant to drought stress based on variations in morphological traits at the greenhouse scale. *Int. J. Agric. Technol.* 21(3): 959–972. https://doi.org/10.63369/ijat.2025.21.3.959-972.
- Mahfut, Setiawan A, Sari M, Sijabat VE, Siregar VAP, Ahmad Z (2023c). Molecular characterization of mycorrhiza and its potential as biocontrol. *SABRAO J. Breed. Genet*. 55(6): 2092-2104. http://doi.org/10.54910/sabrao2023.55.6.21.
- Mahfut, Syahira H, Wahyuningsih S, Handayani TT, Sukimin (2021c). Identification of virus infection on native orchids in Liwa Botanical Garden. The 3rd International Conference on Applied Sciences Mathematics and Informatics (ICASMI) 2020. *J. Phys. Conf. Ser.* 1751(012063): 1-7. https://doi.org/10.1088/1742-6596/1751/1/012063.
- Mahfut, Syarif A, Wahyuningsih S (2025e). Molecular Phylogeny of rDNA-ITS on Native Dendrobium in Lampung. *J. Multidiscip. Appl. Nat. Sci.* 5(2): 553–563. https://doi.org/10.47352/jmans.2774-3047.263.
- Mahfut, Tolangara A, Ahmad H, Rasyid R, Ahmad Z (2023d). Variation of resistance and physiological response of orchid from induction Trichoderma to infection Odontoglossum ringspot virus (ORSV). Asian J. Plant Sci. 22(3): 496-505. https://doi.org/10.3923/ajps.2023.496.505.
- Mansur M, Brearley FQ, Esseen PJ, Rode-Margono EJ, Tarigan MRM (2021). Ecology of *Nepenthes clipeata* on Gunung Kelam, Indonesian Borneo. *Plant Ecol. Divers.* 14(3–4): 195–204. https://doi.org/10.1080/17550874. 2021.1984602.
- Mansur M, Salamah A, Mirnanto E, Brearley FQ (2023). Diversity, ecology and conservation status of *Nepenthes* in West Sumatra province, Indonesia. *Biotropia* 30(2): 220–231. https://doi.org/10.11598/btb.2023.30. 2.1896.

- Mardhiana, Parto Y, Hayati R, Priadi DP (2012). Karakteristik dan Kemelimpahan *Nepenthes* di Habitat Miskin Unsur Hara. *J. Lahan Suboptimal*. 1(1): 50–56. https://doi.org/10.33230/JLSO.1.1.2012.7.
- Mardianto, Fahrizal, Dirhamsyah M (2015).

 Identifikasi Jenis Kantong Semar (Nepenthes spp.) Dalam Kawasan Taman Wisata Alam Gunung Asuansang Kecamatan Paloh Kabupaten Sambas. J. Hutan Lestari 4(1):128–134. https://doi.org/10.26418/ihl.v4i1.15084.
- Nainggolan L, Gultom T, Silitonga M (2020). Inventory of pitcher plant (*Nepenthes* sp.) and its existence in North Sumatra Indonesia. *J. Phys.: Conf. Ser.* 1485: 012013. https://doi.org/10.1088/1742-6596/1485/1/012013.
- Nuraini S, Mahfut, Bangsawan R (2024). Germination of bud chips 5 varieties of commercial sugarcane (*Saccharum officinarum* L.) at PT. GunungMadu Plantation. *The 3rd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2022. AIP Conf. Proc.* 2970: 050037. https://doi.org/10.1063/5.0208193.
- Putera AY, Mawardi I, Ananda M, Sephanti DI, Rajagukguk OPU, Pubianty DP, Mahfut, Ahyar AN, Bangsawan R, Susiyanti E (2024). Anatomic stomata characteristics of 24 mutants of RGM 01-1869 varieties in PT. Gunung Madu Plantations. The International Universitas Lampung Conference on Science, Technology and Environment (ULICoSTE) 2022. AIP Conf. 2970: 050038. Proc. https://doi.org/10.1063/5.0208535.
- Putra A, Syarif A, Mahfut, Sulistiyanti S, Hasibuan M (2024). Performance evaluation of fuzzy logic system for dendrobium identification based on leaf morphology. *J. Appl. Data Sci.* 5(4): 1520–1529. https://doi.org/10.47738/jads.v5i4.224.
- Rasyid AFG, Widya A (2020). Trends in information literacy of new students in plant morphology courses. *J. Pelita Pendidikan* 8(2): 145–144. https://doi.org/10.24114/jpp.v8i2.17704.
- Sari HE, Mahfut, Widyawan A, Wahyuningsih S, Irawan B (2025). Sugarcane commercial cultivars with drought stress tolerance on in vitro and greenhouse scales. *SABRAO J. Breed. Genet.* 57(1): 137-148. http://doi.org/10.54910/sabrao2025.57.1.14.
- Selviana A, Turnip M, Linda R (2018). Morphometric variation and grouping of pitcher plant species (*Nepenthes* Spp.) in Simpang Kasturi Village, Mandor District. *J. Protobiont* 7(2): 29–36.

- Septiana AZ, Mahfut, Handayani TT, Suratman (2024). Survey of Tomato yellow leaf curl virus (TYLCV) infection on *Solanum lycopersicum* L. in Lampung, Indonesia. The 3rd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2022. *AIP Conf. Proc.* 2970: 050027. https://doi.org/10.1063/5.0208190.
- Simamora S, Mahfut, Bangsawan R (2024).

 Germination test of commercial variety of sugarcane (Saccharum officinarum L.) in the end planting month using bud chips at PT Gunung Madu Plantations. The 3rd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2022. AIP Conf. Proc. 2970: 050029. https://doi.org/10.1063/5.0208191.
- Simbolon C, Samiyarsih A, Herawati W (2021). Study of leaf anatomy and morphology of *Nepenthes* spp. Baturaden Botanical Garden

- Collection, Banyumas Regency. *BioEksakta: J. Ilmiah Biologi Unsoed.* 3(3):121–131.
- Wardana ST (2019). Morphological variations of *Nepenthes mirabilis* (Lour) Druce in the peat swamp habitat. *J. Biol. Tropis*. 23 (3): 47–52. https://doi.org/10.29303/jbt.v23i3.4958.
- Wardhani HAK (2019). Identification of *Nepenthes* plants in the peatlands of Marti Guna Village, Sintang District. *J. Keguruan dan Ilmu Pendidikan*. 3(1): 22–25.
- Wahyuningsih S, Mahfut, Putri DS (2025). Genetic stability and phytochemical properties of *Dendrobium nobile* Lindl. as an antiviral using RAPD. *SABRAO J. Breed. Genet.* 57(3): 924-934. http://doi.org/10.54910/sabrao2025.57.3.5.
- Yudaputra (2021). Predictive habitat suitability of critically endangered *Nepenthes* sumatrana. *IOP Conf. Ser.: Earth Environ. Sci.* 948 (2021): 1–6.