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SUMMARY

The physic nut (Jatropha curcas) plant, as a renewable alternative fuel source, has greater potential
with many advantages than other plant sources. The following study sought to analyze the lipid
metabolism pathway and determine its correlation with plant morphological traits. The study
transpired using morphophysiological and metabolomic approaches, specifically GC-MS (gas
chromatography-mass spectrometry). In the J. curcas fruits, metabolites detected totaled 73, which
play a significant role in the fatty acid biosynthesis metabolism pathway. However, specifically in the
sesquiterpenoid and triterpenoid biosynthesis pathway, only nine key metabolites gained identification
in the J. curcas fruits, playing a vital role. The correlation values of several growth characters and
marker metabolites revealed most of the traits had significant positive and negative correlations with
each other. The plant height appeared considerably positively correlated with celidoniol, trans-
squalene, and tetradecane. In conclusion, the growth characteristics, such as plant height and leaf
traits, have a significant positive and negative correlation with marker metabolites in the formation of
fatty acid biosynthesis metabolic pathways and sesquiterpenoid and triterpenoid metabolism.
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Key findings: This research has identified the association among the plant growth and metabolite
markers in Jatropha curcas.
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INTRODUCTION

Jatropha curcas is a species of flowering plants
in the spurge family Euphorbiaceae, which is
native to the American tropics, most likely
Mexico and Central America (Janick and Paull,
2008; Mishra, 2009). Its common names in
English include physic nut, Barbados nut,
poison nut, bubble bush, and purging nut. In
Indonesia, J. curcas has the names ‘jarak
budeg,’” ‘jarak gundul,” and ‘jarak cina.” The
development of the J. curcas plant as a
renewable alternative fuel source has huge
potential because of its numerous advantages
compared with other plant sources.

Jatropha curcas is a tropical plant with
a wide cultivation in America, Asia, and Africa
(Gubitz et al., 1999). The said plant’s probable
distribution was by Portuguese sailors through
the Cape Verde Islands and Guinea-Bissau to
other countries in Africa and Asia (Heller,
1996). This plant has characteristics of a
woody plant with a round stem that contains
much sap. It can grow up to six meters tall and
can live up to 50 years. The bark is pale
brown, thin, and tends to peel easily. The stem
has irregular branches and grows upwards.
Single leaves have alternating positions along
the stem. The leaves have stalks (petioles)
with a length of 2-20 cm. The leaf blades are
palmate or finger-shaped with 3-5 notched
sides, measuring 12.5-18 cm x 11-16 cm
wide. The apex (tip) of the leaf is acuminate
(Jones and Csurhes, 2008).

In addition, by having a high oil
content, J. curcas is relatively easy to cultivate.
Jatropha curcas grows well in dry conditions
with low rainfall and on the marginal lands with
low fertility, i.e., suboptimal lands. Therefore,
it can support land conversion from suboptimal
to optimal land in dry conditions. Moreover, J.
curcas cultivation does not compete in land use
compared with other food crops (Sharma et
al., 2009). These characteristics provide a
great opportunity for development, especially
in Indonesia, because this plant still has quite
extensive marginal lands that are unutilized as
arable lands.

Jatropha plants do not require special
growing conditions, and their planting can be
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widespread in tropical areas as a hedge around
fields and villages (Srivastava et al., 2011).
Jatropha can easily adapt to the environment,
including critical and marginal environmental
conditions, with the Jatropha plant also used
for reforestation of eroded areas (Heller,
1996). The said plant can survive well with the
disperse altitude, particularly from 0 to 2000 m
above sea level, with rainfall of 300-1200 mm
annually and temperatures ranging from 18 °C
to 30 °C. In areas with low temperatures (<18
°C), this can reduce its growth, while at high
temperatures (>35 °C), the leaves and flowers
may fall, and the fruit becomes dry, which
eventually affects its production. However,
Jatropha can grow in less fertile areas but must
have good drainage and no flooding, with a soil
pH of 5.0-6.5 (Prihandana and Hendroko,
2006). Such growing habits are preferable for
its cultivation to obtain oil metabolites in
Jatropha plants.

Studies on the use of J. curcas plants
as a renewable alternative biofuel source
remain limited, including in Indonesia (Sharma
et al., 2009). This characteristic presents a
significant opportunity for development, as
Indonesia still possesses extensive marginal
lands still available for agricultural utilization.
Recently, no such research for metabolite
markers and their relationship with growth
characteristics in J. curcas has commenced (Yi
et al., 2010), even though the lipid metabolism
pathway has the potential for association
(Syakir, 2010; Utami et al., 2012). Therefore,
such research on metabolite markers that play
a crucial role in regulating lipid metabolism for
biofuel producers is vital. Hence, the presented
study aimed to analyze the lipid metabolism
pathway and its correlation with plant growth
characteristics, such as plant height and leaf
morphology.

MATERIALS AND METHODS
Plant material and equipment
The materials used in this study were J. curcas

plants. The tools used included a vacuum
pump, Jerrycan, pH meter, Erlenmeyer flask,
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aerator, petri dish, pipette, Sedgewick rafter,
lamp, oven, water bath, Millipore centrifuge,
centrifuge tube, watch glass, and scale.

Determination of media for vegetative
growth

The growth of J. curcas plants succeeded in
polybags with 100 experimental units and
various abiotic treatments. In addition, J.
curcas from existing lands also served as
specimens in this study, especially for
metabolomic testing (Openshaw, 2000). The
growth and development of the potential of the
J. curcas plants progressed by following the
findings of Dasumiati et al. (2014).

GC-MS analysis

The gas chromatography-mass spectrometry
(GC-MS) analysis began by following the
methods of Fendiyanto et al. (2020) and
Pratami et al. (2020). An extraction of 15 g of
Jatropha fruit using ethyl acetate continued at
room temperature for 3 h (Sangwan et al.,
2015a). The analysis ensued using GC-MS
instruments (Barqi, 2015), particularly the
evaporator (Caliper-Life-Science, USA), main
instrument, autosampler (Agilent Tech-Palo
Alto, USA), and Mass Selective Detector (inert
MSD Detector, Agilent Tech-Palo Alto, USA).
Researchers used the metabolomics approach

based on Kusano et al. (2015) and Sangwan et
al. (2015b) as reference studies.

Statistical analysis

Statistical analysis, as performed, employed
the R version 4.4.0 program (Lander, 2014)
and the Agricolae package by following the
methodology of Fendiyanto et al. (2020). The
assessment included analysis of variance
(ANOVA), Duncan’s multiple range test
(DMRT), and the T-student test (Fendiyanto et
al., 2019). The univariate and multivariate
data’s analyses also took place (Fendiyanto et
al., 2019a, b). For statistical description, the
application of R (Lander, 2014) and the Metabo
Analyst R package aided this study (Chong et
al., 2018; Chong and Xia, 2018; Chong et al.,
2019; Pang et al., 2020).

RESULTS
Plant growth characters

Overall, the J. curcas plants showed better
growth in the potted planting media.
Vegetative growth displayed considerable and
better plant height and leaf characteristics.
Based on the study of the leafy morphology,
the leaf features, such as leaf circumference,
width, and length, relatively provided the same
values among several replications (Figure 1).

Figure 1. Growth of Jatropha curcas plants at three months after cuttings. A ruler shows the length of
the calibrator (1-10 cm). Plant height in the vegetative phase (A) and growth characteristics of leaves

(B). Scale bar: 1 cm.
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Metabolite pathway

The results revealed a total of 73 metabolites
found active in the fruits of J. curcas plants,
indicating these metabolites have significant
functions in the metabolic pathways of fatty
acid biosynthesis (Figure 2). According to the
fatty acid biosynthesis, the main pathways
occurred in the pyruvate, B-alanine, and lipoic
acid metabolisms; fatty acid degradation; and
mycolic acid biosynthesis pathways. The vital
hexadecanoyl pathway also occurred in the

fruit of the J. curcas. Based on the metabolite
pathways, especially sesquiterpenoid and
triterpenoid biosynthesis, the primary
pathways that appeared in the fruit of the J.
curcas were steroid metabolism, triterpenoids
in hopene and tetrahymanol, and protosteryl
type (Figure 3). Specifically in the
sesquiterpenoid and triterpenoid biosynthesis
pathways, only nine key metabolites, as
identified, play a vital role in the fruits of the
Jatropha curcas.
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Figure 2. Metabolite pathway of fatty acid biosynthesis in Jatropha curcas. Metabolites were taken

from the fruits of the plants.
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Figure 3. Metabolite pathway of sesquiterpenoid and triterpenoid biosynthesis in Jatropha curcas.
Metabolites extracted came from the fruits of the plants.
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Figure 4. Correlation analysis of plant growth characters, leaf traits, and metabolites from Jatropha
curcas. Plant height (PL), Leaf margin (LM), Leaf length (LL), Leaf diagonal (LD), Tridecane (A), 7,9-
Di-tert-butyl-1-oxaspiro (B), Icosane (C), Hexadecanoic acid (D), Octadecenoic acid (E),
Aminoethanethiol hydrogen sulfate (F), Heptadecene (G), Oleic acid (H), 9,12- Octadecenoic acid (I),
Tetracosane (J), 9,17-Octadecadienal (K), Nonadecane (L), Heptacosane (M), Heneicosane (N), Trans-
squalene (0), 14-methyl-8-Hexadecyn (P), Celidoniol (Q), Tricosane (R), 1.19-Eicosadiene (S),
Hentriacontane (T), Cyclooctacosane (U), Tetradecane (V), Tetradecene acetate (W), Oxirane (X),
Eicosanol (Y), gamma Sitosterol (Z), Olean (AA), and Eicosadiene (BB).

Correlation among metabolite markers The reported metabolite product related to
and plant growth biofuel was triacylglycerols (TAG). The TAG

synthesis bears regulation from the lipid
The correlation analysis among several growth metabolism in all organisms, including in crop
characters and metabolite markers showed plants (Fendiyanto et al., 2024), and has
that most of these traits had significant different  regulations with lipid-producing
positive or negative correlations with each microalgae (Milano et al., 2016). Lipid
other (Figure 4). The plant stature exhibited metabolism also occurs in plants; however, the
considerable positive association with the said process is different in crop plants (Obata
metabolite markers, i.e., celidoniol, trans- and Fernie, 2012) compared with animals. In
squalene, and tetradecane (Figure 4). the J. curcas, lipid biosynthesis investigation

emerged by involving the enzymes ACC and
GPAT in the triacylglyceride pathway (Maes et

DISCUSSION al., 2009), beginning from the acetyl-CoA to oil

bodies in the plastids and endoplasmic
Lipid metabolism has the potential pathways to reticulum (Fendiyanto et al., 2024). Lipid
understand how the J. curcas functions as a biosynthesis metabolism is essential to produce
bioenergy source (Fendiyanto et al., 2024). the bioenergy source in the J. curcas, as
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preliminary studies show. This study performed
the correlation among lipid metabolites and
morphological characters (Tables 1 and 4).

The fossil fuel price in 2005 increased
and had reached more than USD 70 per barrel.
Various predictions estimated that the price
increase was not the end of the fossil fuel
increase episode but rather the initial stage
that would continue to further price
enhancements in the following years, and the
same happened in mid-2013. The fuel price
increase resulted from fuel reserves and raw
materials’ increasing depletion and even
exhaustion. This event became an important
momentum for the development of alternative
energy to replace the fuels (Fendiyanto et al.,
2024).

Biofuels are quite different from crude
oil, especially in terms of their sources and the
impact of their use. Biofuels require plant
biomass as raw material, with more reliance on
the plantation and agricultural industries, while
crude oil commonly comes from the fossils
formed from plants and microscopic animals
over millions of years (Shu et al., 2011). The
basis of crude oil has more emphasis on
energy farming, not on energy hunting, as
carried out in crude oil processing. In this
study, we found a high correlation between
morphological characters and metabolites in
the J. curcas (Tables 1-4). This study indicated
that morphological attributes could be
beneficial as markers to predict metabolite-
related lipid metabolism in J. curcas.

Energy farming contains a mindset that
prioritizes the collection and storage of solar
energy that can be renewed by itself (self-
sustainable), and of course does not damage
the environment because it is pollution-free.
The use of vegetable oil can also reduce
greenhouse gas emissions (Achten et al.,
2008; Sharma et al., 2009). In the presented
study, a positive association was evident
among the plant growth markers and lipid
metabolism in J. curcas. Therefore, energy
farming is the idea of cultivating energy
through green plants known as green energy,
such as cultivating castor oil plants for fuel raw
materials.
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CONCLUSIONS

In summary, this study shows growth
characteristics, such as plant height and leaf
features, have a strong positive and negative
correlation with marker metabolites in the
formation of fatty acid biosynthesis metabolic
pathways, sesquiterpenoid, and triterpenoid
metabolism.
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