SABRAO Journal of Breeding and Genetics 57 (5) 1830-1837, 2025 http://doi.org/10.54910/sabrao2025.57.5.5 http://sabraojournal.org/pISSN 1029-7073; eISSN 2224-8978

MULTIVARIATE ANALYSIS IN EXOTIC MUNG BEAN (VIGNA RADIATA L.) GENOTYPES FOR YIELD ATTRIBUTES

A. NARIMANOV¹, A. AZIMOV¹, A. SHADMANOVA¹, G. UMAROVA², A. HAKIMOV¹, Z. ZIYAEV³, A. ELMURODOV¹, D. MUSIRMANOV³, T. MAKHMUDOV¹, and J. SHAVKIEV^{1*}

¹Institute of Genetics and Plant Experimental Biology, Tashkent, Uzbekistan

²Andijan State University, Andijon, Uzbekistan

³Research Institute of Plant Genetic Resources, Tashkent, Uzbekistan

*Corresponding author's email: jaloliddinshavkiev1992@gmail.com

Email addresses of co-authors: abdujalil.narimanov@mail.ru, azimov.abdulahat@bk.ru, i60549080@gmail.com, xakimov.abdumurod@mail.ru, elmurodov.abb@yandex.ru, musirmanovdilshod@gmail.com, tohir_m@inbox.ru

SUMMARY

The following research comprised the evaluation of one local cultivar, 'Durdona,' and 15 exotic genotypes of mung bean (*Vigna radiata* L.) for mean performance and traits association through morpho-yield attributes under field conditions of Tashkent Region, Uzbekistan. Results showed exotic mung bean lines AVMU2003, AVMU2004, AVMU1681, and AVMU2002 have better performance for morpho-yield traits than other genotypes. The correlation analysis revealed a significant positive relationship between the grains per pod and grain weight per pod, as well as grain weight per pod and 1000-grain weight. The traits of number of grains per pod and grain weight per pod had a positive effect and major contribution in managing the seed yield in mung beans.

Keywords: Mung bean (*V. radiata* L.), multivariate analysis, morpho-yield traits, correlation, plant height, pods, seed yield, Tashkent Region

Key findings: Genotypes AVMU2003, AVMU2004, AVMU1681, and AVMU2002 have shown better performance for morpho-yield traits than other genotypes. These genotypes' use can be effective in future breeding programs for improvement in mung beans.

Communicating Editor: Prof. Dr. Ijaz Rasool Noorka

Manuscript received: January 16, 2025; Accepted: April 21, 2025 © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2025

Citation: Narimanov A, Azimov A, Shadmanova A, Umarova G, Hakimov A, Ziyaev Z, Elmurodov A, Musirmanov D, T. Makhmudov, Shavkiev J (2025). Multivariate analysis in exotic mung bean (*Vigna radiata* L.) genotypes for yield attributes. *SABRAO J. Breed. Genet.* 57(5): 1830-1837. http://doi.org/10.54910/sabrao2025.57.5.5.

INTRODUCTION

The mung bean (*Vigna radiata* L. Wilczek) is a highly valuable and short-lived legume of the family Fabaceae. It is rich in protein, widely adaptable to various environmental conditions, and contributes to soil fertility through biological nitrogen fixation (Sagar *et al.*, 2017). The mung bean is essentially nutritious and early-maturing, with primary cultivation in South Asia, Southeast Asia, and Australia (Nair and Schreinemachers, 2020). Recently, mung beans have gained a remarkable demand in Western countries as a plant-based protein source (Aschemann-Witzel *et al.*, 2020).

Mung bean is easy to digest and contains 22%-28% seed protein, 1%-1.5% fat, and 60%-65% carbohydrates, along with various vitamins, minerals, and antioxidants (Sandhu and Singh, 2021). With its nutritional values, the mung bean is an ingredient in various culinary applications based on local preferences. Its common consumption is as dal soup; however, it also becomes processed into noodles, porridge, curries, ice cream, cakes, bean paste, soups, sweets, and flour (Dahiya et al., 2015). Moreover, cooking the seeds is typical as dry beans, sprouted grams, and split dal in India and Bangladesh (Aski et al., 2021) and as vegetable bean sprouts in other regions (Nair and Schreinemachers, Additionally, mung bean seeds, fodder, and haulms crucially serve as fertilizer and animal feed (Kim et al., 2015).

The mung bean is highly adaptable to harsh environmental conditions, requiring minimal water and fertilizer inputs, and thrives across a wide range of temperate and tropical climates (Tantasawat et al., 2015). Despite its versatility, breeding efforts in Asia have been limited, leading to a significant knowledge gap in key agronomic traits, such as seed size, shape, and color. These traits are crucial for varietal improvement, making them an important focus for future research through various breeding programs (Roychowdhury et al., 2012).

Cultivating leguminous crops, including mung beans, after harvesting winter wheat, potatoes, mustard, and sugarcane enhances the soil fertility by introducing organic matter,

micro- and macro-elements, and high biomass value, particularly in ecologically degraded regions. hindrances However, widespread adoption of summer mung bean result from high labor costs for hand-picking, low stem height, bushy growth, susceptibility to climatic vagaries, and vulnerability to diseases and pests, reducing the yield. Mechanized harvesting is more feasible with strong stems, upright growth, and appropriate branching in mung beans. Recently conducted research led to the development of mung bean cultivars ideal for mechanized harvesting, which include strong and tall stems, upright plants, and large and transparent grains, with high yield potential (Annicchiarico et al., 2019).

In photoperiod- and temperaturesensitive crops, including mung beans, higher stress resistance. and broader adaptability are critical characteristics. The mung bean is a short-day plant traditionally in Asian countries with consumption. Despite its long-standing history, limited research has progressed on its genetic The mung bean cultivar improvement. Zhonglv-5, developed through crossbreeding in China in the early 2000s, has played a vital role in improving its cultivation in China. This cultivar offers resistance to various stresses, wide adaptability, and the highest seed yield (Adebisi et al., 2004). Zhongly-5 is an earlymaturing cultivar that grows upright, with stems resistant to lodging. Therefore, the said cultivar is fully suitable for mechanized which contains 23.1%-25.1% harvesting, protein and 50.5%-51.9% starch.

Providing adequate food for the growing population has become an economic, social, and political challenge. Meeting the demand for vegetable protein is one of the key solutions to addressing this issue. The mung bean is an excellent source of protein, containing 24%–28% protein, 2%–4% oil, and 46%–50% starch, along with B vitamins, lysine, and arginine. The mung bean flour can blend well with 5%–10% wheat flour to enhance its nutritional value (Hasanuzzaman et al., 2016; Muthuswamy et al., 2019; Faysal et al., 2022). Significant variation in sprouting resistance before harvest has been visible

among mung bean genotypes, ranging from 2.09% to 100%, with resistant genotypes successfully identified (Tantasawat *et al.*, 2015).

Production of mung beans faces major constraints, including late-season heat stress and pre-harvest germination during the rainy season, considerably reducing their seed yield. By shortening the maturation period (10-15 days) without yield loss, it could help mitigate these challenges. The Legume Research Institute in Kanpur, India, developed two early-maturing mung bean genotypes, maturing in 45-48 days and 10-12 days earlier than standard genotypes. These genotypes also proved resistant to yellow mosaic virus and have desirable morphological traits (Sandhu and Singh, 2021).

The mung bean is a vital earlymaturing legume in India, which historically been the world's largest producer and consumer of mung bean products. Systematic breeding efforts have led to the development of improved cultivars; however, their full genetic potential remains unrealized due to various abiotic stresses, such as high temperatures, drought, and salinity, which cause significant yield losses. Efforts to breed stress-resistant cultivars have faced challenges due to the complex nature of these stresses and the difficulties in their assessment (Muthuswamy et al., 2019; Khamraev et al., 2025).

One of the key requirements for largescale mung bean cultivation is a high-proteinrich cultivar that could be a potential substitute for meat (Sandhu and Singh, 2021). Among legumes, the mung bean is unique for its nutritional values, with protein digestibility Protein content varies averaging 86%. depending on the plant cultivar, growth conditions, and field practices. Interestingly, when grown as a secondary crop, mung bean grain tends to have higher protein content (Hasanuzzaman et al., 2016). The following research aimed to develop high-yielding mung bean cultivars, well-adapted to diverse soil and environmental conditions, while studying their biological properties.

MATERIALS AND METHODS

Experimental site

Field experiments proceeded during the crop season of 2022-2023 at the Durmon Regional Experimental Base, Institute of Genetics and Plant Experimental Biology, District Kibray, Tashkent Region, Uzbekistan (41°20′N latitude, 69°18'E longitude). The experimental field soil is a low-humus typical sierozem with a medium sandy texture. The terrain is slightly sloping and non-saline, with minimal impact from Verticillium wilt. Groundwater has a depth of 7-8 meters. The climate is highly variable, with hot summers (June, July, and August) and sharply cold winters (especially in December and January). The site experiences 175-185 sunny days annually, with a frost-free period lasting 200-210 days. Rainfall occurs mainly in autumn, winter, and spring, while summers are dry, necessitating artificial irrigation for mung bean cultivation.

Agricultural practices

Agricultural practices continued following the protocols established by the Institute of Genetics and Plant Experimental Biology. After the wheat harvest, the field's clearing in spring occurred, with the plots plowed to a depth of 35 cm. Fertilizer applications transpired under moderate soil and air temperatures, while performing soil pulverization retained moisture and controlled weeds. Irrigation and other agronomic activities progressed throughout the growing season. Mineral fertilizers' application both commenced before planting and through top dressing at three key growth stages: the beginning of pod formation, flowering, and pod development. The annual fertilizer application rate was 60:90:30 NPK kg/ha.

Sowing scheme

Sowing commenced in the third week of April following a 60 cm \times 10 cm \times 1 cm planting scheme. The planting of seeds had a depth of

4–5 cm with three replications, with two rows in each replication and 25 seedbeds per row. Each replication included 100 plants. Inter-row cultivation and weeding ensued in combination with irrigation.

Plant material

The study utilized mung beans (V. radiata L.), including the local cultivar 'Durdona' and 15 exotic genotypes: AVMU1676, AVMU1677, AVMU1679, AVMU1678, AVMU1680, AVMU1682, AVMU1683, AVMU1681, AVMU1684, AVMU1685, AVMU2001, AVMU2003, AVMU2004, AVMU2002, AVMU2005.

Data recorded

The data recorded were on various morphoyield traits, i.e., plant height (cm), harvested branches, pods per plant, pod weight (g), grains per pod, grain weight per pod (g), and 1000-grain weight (g). The measuring of all traits used standard methods.

Statistical analysis

The analysis of variance (ANOVA) of mung bean genotypes proceeded according to standard protocols (Steel *et al.*, 1997). The genotype means with significant differences for each trait reached further detection using Fisher's criterion (F), standard error of the mean difference (SE), and least significant difference (LSD) levels ($P \le 0.05^*$, $P \le 0.01^{**}$, and $P \le 0.001^{**}$). Correlation coefficients' calculations among the various traits also ensued (Kwon and Torrie, 1964).

RESULTS

By studying the morpho-yield attributes of 16 mung bean genotypes in the experiment, the highest values of plant height resulted in the genotype AVMU2002 (103.0 ± 1.01 cm), while the lowest were in the genotype AVMU1680 (57.60 ± 0.38 cm). On average, it was also noticeable that, in most mung bean genotypes, the plant height ranged from 80 to 100 cm.

According to the number of harvested branches, the highest number of branches were prominent in the local cultivar 'Durdona' (9 ± 0.24) and exotic genotypes AVMU1682 and AVMU1685 $(10.0 \pm 0.37 \text{ and } 9.40 \pm 0.27,$ respectively). However, the fewest branches appeared in exotic genotypes AVMU1679, AVMU2002, and AVMU2003 $(6.4 \pm 0.25, 6.20 \pm 0.25, \text{ and } 6.20 \pm 0.13, \text{ respectively})$. In the 16 mung bean genotypes, it was also evident that the number of harvested branches ranged from seven to nine.

The most pods per plant (52.80 \pm 2.17) came from the exotic genotype AVMU1685, while the lowest pods were in the genotypes AVMU1677, AVMU1683, AVMU2005 (33.80 \pm 2.65, 30.0 \pm 0.97, and 33.00 ± 0.73 , respectively). It has also surfaced that in the exotic mung bean genotypes, the number of pods per plant mainly ranged from 30 to 50. Among the 16 mung bean genotypes, the heaviest pod weight was notable with the exotic genotypes AVMU2003 and AVMU2004 (1.24 \pm 0.03 and 1.24 ± 0.03 g, respectively). The genotype AVMU1683 revealed the lightest pod weight $(0.69 \pm 0.01 \text{ g})$. Under field conditions, it was also remarkable that, in the mung bean genotypes, the pod weight mainly ranged from 0.75 to 1.00 g (Table 1).

Among mung bean genotypes, the maximum number of grains per pod occurred in genotype AVMU1681 (11.00 \pm 0.31). However, the minimum number of grains per pod manifested in the exotic genotypes AVMU2004 and AVMU2005, with 9.40 \pm 0.41 and 9.30 ± 0.31 grains per pod, respectively. The ultimate total grain weight per pod resulted in the exotic genotype AVMU2003 $(0.88 \pm 0.03 \text{ g})$, while the lowest values for this trait were notable in genotypes AVMU1679, AVMU1680, and AVMU1682 (0.49 \pm 0.02, 0.49 \pm 0.01, and 0.46 \pm 0.01 g, respectively). From the 16 mung bean genotypes, the grain weight per pod ranged from 0.50 to 0.80 g.

The results further revealed that under field conditions in the Tashkent Region, the determined 1000-grain weight mainly varied from 50 to 70 g in the mung bean genotypes. The maximum 1000-grain weight appeared in

Table 1. Morpho-yield traits of one local cultivar and 15 exotic mung bean genotypes under field conditions of Tashkent Region, Uzbekistan.

	Genotypes	Plant height	Harvested	Pods per plant	Dod weight (g)	Grains per pod	Grain weight	1000-grain
No.		(cm)	branches (#)	(#)	Pod weight (g)	(#)	pod ⁻¹ (g)	weight (g)
		ME±SE	ME±SE	ME±SE	ME±SE	ME±SE	ME±SE	ME±SE
1	Durdona	63.0 ±1.01	9±0.24	41.0±2.20	0.94±0.02	10.6±0.24	0.63±0.02	54.8±0.08
2	AVMU1676	73.4 ± 0.64	7.0 ± 0.18	38.8±2.88	0.87 ± 0.03	10.6±0.23	0.58 ± 0.02	53.0±0.17
3	AVMU1677	89.4±1.03	7.0 ± 0.30	33.8±2.65	0.88 ± 0.02	10.7±0.24	0.61 ± 0.01	53.4±0.08
4	AVMU1678	83.4±0.64	7.0 ± 0.18	40.6±2.42	0.82 ± 0.02	9.8±0.26	0.57 ± 0.01	53.4±0.14
5	AVMU1679	89.0 ±1.12	6.4 ±0.25	41.0±3.23	0.75 ± 0.03	10.0±0.36	0.49 ± 0.02	44.5±0.12
6	AVMU1680	57.6 ±0.38	7.2 ± 0.25	43.4±3.03	0.71 ± 0.02	9.8±0.17	0.49 ± 0.01	50.3±0.09
7	AVMU1681	91.4 ±2.54	6.8 ± 0.13	38.8±2.55	0.99 ± 0.02	11.0±0.31	0.71 ± 0.02	62.1±0.15
8	AVMU1682	77.4±0.74	10.0 ± 0.37	48.4±2.33	0.69 ± 0.01	9.5±0.23	0.46 ± 0.01	44.9±0.15
9	AVMU1683	77.4 ±3.03	8.2 ± 0.22	30.0±0.97	0.80 ± 0.03	10.8±0.34	0.54 ± 0.02	49.8±0.20
10	AVMU1684	89.8 ± 0.43	7.0 ± 0.11	40.8±1.88	0.77 ± 0.03	9.7±0.33	0.52 ± 0.02	52.2±0.14
11	AVMU1685	85.4 ±1.30	9.4 ± 0.27	52.8±2.17	0.79 ± 0.03	9.4±0.38	0.53 ± 0.02	53.4±0.26
12	AVMU2001	82.8±0.66	8.2 ± 0.13	41.0±0.99	0.85 ± 0.01	10.8±0.22	0.59 ± 0.01	51.8±0.23
13	AVMU2002	103.0 ± 1.01	6.2 ± 0.25	46.4±3.16	0.95 ± 0.02	10.5±0.26	0.67 ± 0.01	67.3±0.30
14	AVMU2003	87.0±0.86	6.2 ± 0.13	37.4±1.76	1.24±0.03	10.6±0.31	0.88 ± 0.03	74.8±0.28
15	AVMU2004	94.0±0.98	8.2 ± 0.27	42.6±2.13	1.02 ± 0.04	9.4±0.41	0.64±0.03	67.2±0.25
16	AVMU2005	80.0 ± 1.60	7.6 ± 0.13	33.0±0.73	0.87 ± 0.01	9.3±0.31	0.54 ± 0.01	59.4±0.14

Table 2. Correlation coefficient among the morpho-yield traits in exotic mung bean genotypes.

Traits	Plant height (cm)	Harvested branches (#)	Pods per plant (#)	Pod weight	Grains per	Grain weight pod ⁻¹ (g)	1000-grain weight (g)
Plant height (cm)		-0.3777	0.0782	0.4709	0.0326	0.3461	0.4500
Harvested branches (#)			0.3834	-0.4491	-0.3466	-0.4834	-0.3933
Pods per plant (#)				-0.2467	-0.4371	-0.1157	-0.0868
Pod weight (g)					0.4262	0.8943***	0.9055***
Grains per pod (#)						0.5252*	0.1575
Grain weight per pod (g)							0.8143***

the exotic genotype AVMU2003 (74.8 \pm 0.28 g), while the minimum values for the said trait manifested in the exotic mung bean genotypes AVMU1679, AVMU1683, and AVMU1684 (44.5 \pm 0.12, 44.9 \pm 0.15, and 49.8 \pm 0.20 g, respectively).

In the said experiment, Pearson correlation, as performed on morpho-yield traits of 15 exotic genotypes and one local cultivar of mung bean, displayed a significant positive correlation ($r=0.89^{***}$ and $r=90^{***}$, respectively) in pod weight with the pod grain weight and 1000-grain weight. A moderate positive correlation ($r=0.50^{*}$) was evident between the trait's grains per pod and grain weight per pod. A strong positive correlation ($r=81^{***}$) emerged between the grain weight per pod and 1000-grain weight. Correlation analysis showed the number of grains per pod and grain weight per pod had a

positive effect and major contribution in managing the seed yield in mung beans (Table 2).

The agglomeration schedule indicated which observations were combining at each stage of the clustering process (Table 3). In the first stage, observation 4 was conservation 10. The distance between the groups when combined was 0.55023. It also revealed that at stage 3, this combined group further joined with another cluster (Figure 1).

DISCUSSION

The information on genetic variability and the association between the agronomic traits and seed yield play an influential role in supporting mung bean breeding programs. The genetic variation among the mung bean genotypes

Table 3. Clus	ter analysis	of exotic	muna b	ean genotypes	s.
---------------	--------------	-----------	--------	---------------	----

Ctagge	Combined	Combined	— Distance	Previous stage	Previous stage	Next	
Stages	Cluster 1	Cluster 2	— Distance	Cluster 1	Cluster 2	Stage	
1	4	10	0.55023	0	0	3	
2	2	12	1.2684	0	0	5	
3	4	5	2.01674	1	0	11	
4	8	11	2.88896	0	0	14	
5	2	3	3.79068	2	0	7	
6	7	13	4.8125	0	0	10	
7	2	9	6.088	5	0	9	
8	15	16	7.40865	0	0	12	
9	1	2	8.81238	0	7	13	
10	7	14	10.5888	6	0	15	
11	4	6	12.4425	3	0	12	
12	4	15	14.6562	11	8	13	
13	1	4	17.5171	9	12	14	
14	1	8	21.1429	13	4	15	
15	1	7	26.4662	14	10	0	

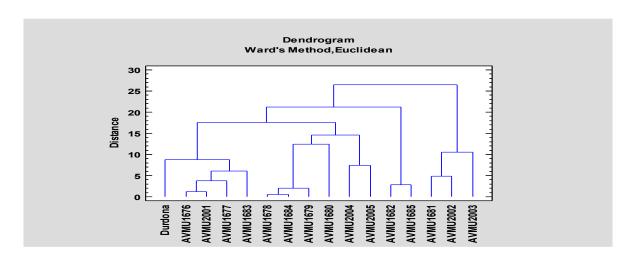


Figure 1. Dendrogram analysis of exotic mung bean genotypes.

proved to be significant for most traits studied, especially maturity, plant height, pods per plant, and seed size. Among the seed yield components, the number of pods per plant and plant height appeared to be positively correlated with yield; however, they emerged negatively correlated with grain size. The outcomes showed that the number of pods per plant and plant height had the greatest direct impact on grain yield (Sen and De, 2017; Annicchiarico *et al.*, 2019).

Accurate genotypic descriptions and organization of genetic diversity would help to determine breeding strategies and facilitate

appropriate choices for germplasm conservation (Tian et al., 2023; Alpamyssova et al., 2024). In the presented study, the 16 mung bean genotypes have shown characteristics using seven morphological features as per the standard list of descriptors for mung beans. Morphological characterization has been crucial in determining the genetic diversity in the mung bean. For an effective and accurate evaluation, maintenance, the genotype's performance, and the level of genetic diversity require investigation (Sarkar and Kundagrami, 2016; Carrillo-Perdomo et al., 2020).

Globally, the primary objective of mung bean breeding programs is to breed for high production potential, preferred grain quality, and resistance to abiotic and biotic stress conditions. These goals can be successful because of the considerable genetic variation within the existing germplasm available to the breeders. Breeders must regularly exchange germplasm locally and globally to achieve the breeding aims. Investigating the level of genetic diversity is crucial for the proper evaluation, management, and exploration of the available germplasm (Glenn et al., 2017; Idrisov, 2022).

The breeding program mainly depends upon the degree of genetic diversity, with the morphological characterization regarded as an essential step in the description and categorization of plant genetic resources (Yeginbay et al., 2024). Screening for qualitative traits is essential for characterizing crop plants and has become crucial for the registration and certification of various crops (Azimov et al., 2023; Yeginbay et al., 2023; Narimonov et al., 2023; Rajabov et al., 2024).

CONCLUSIONS

The morpho-yield characteristics revealed that the local cultivar 'Durdona' and exotic genotypes of mung bean AVMU2003, AVMU2004, AVMU1681, and AVMU2002 showed better performance than other genotypes. Moreover, a significant positive correlation existed between the grains per pod and grain weight per pod, as well as between total grain weight per pod and 1000-grain weight.

ACKNOWLEDGMENTS

The authors are grateful to the Durman Experimental Field Station for providing space and resources to carry out this work.

REFERENCES

Adebisi MA, Ariyo OJ, Kehinde OB (2004). Variation and correlation studies in quantitative

- characters in soybean. *Ogun. J. Agric. Sci.* 3: 134–142.
- Alpamyssova G, Zhapparbergenova E, Yermekbayeva A, Anuarova L, Saparbayeva N, Alpamyssova A, Yeginbay A, Burabaev A, Burabaev A, Narimanov A (2024). Growing Arum korolkowii Regel in laboratory conditions. *Casp. J. Environ. Sci.* 22: 329–337.
- Annicchiarico P, Nazzicari N, Ferrari B, Harzic N, Carroni AM, Romani M, Pecetti L (2019). Genomic prediction of grain yield in contrasting environments for white lupin genetic resources. *Mol. Breed.* 39. 142.
- Aschemann-Witzel J, Gantriis RF, Fraga PF, Perez-Cueto JA (2020). Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. *Crit. Rev. Food Sci. Nutr.* 61: 3119–3128.
- Aski MS, Rai N, Reddy VRP, Gayacharan Dikshit HK, Mishra GP (2021). Assessment of root phenotypes in mung bean mini-core collection (MMC) from the World Vegetable Center (AVRDC), Taiwan. *Plos One* 16: e0247810.
- Azimov A, Shavkiev J, Saidjanov S, Ziyaev Z, Valiyev L (2023). Mung Bean (*Vigna radiata* L.) genotypes assessment for drought tolerance in Uzbekistan. *J Wildlife Biodiverse*. 8(1): 65–75.
- Carrillo-Perdomo E, Vidal A, Kreplak J, Duborjal H, Leveugle M, Duarte J, Tayeh N (2020). Development of new genetic resources for faba bean (*Vicia faba* L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus. *Map. Sci. Rep.* 10: 6790.
- Dahiya PK, Linnemann AR, Van-Boekel MAJS, Khetarpaul N, Grewal RB, Nout MJR (2015). Mung bean: Technological and nutritional potential. *Crit. Rev. Food. Sci. Nutr.* 55: 670–688.
- Faysal ASM, Ali L, Azam MG, Sarker U, Ercisli S, Golokhvast KS, Marc RA (2022). Genetic variability, character association, and path coefficient analysis in transplant Aman rice genotypes. *Plants* 11: 2952.
- Glenn KC, Alsop B, Bell E, Goley M, Jenkinson J, Liu B, Urquhart W (2017). Bringing new plant varieties to market: Plant breeding and selection practices advance beneficial characteristics while minimizing unintended changes. *Crop Sci.* 57. 2906–2921.
- Hasanuzzaman ATM, Islam MN, Zhang Y, Zhang CY, Liu TX (2016). Leaf morphological characters can be a factor for intra-varietal preference of whitefly *Bemisia tabaci*

- (Hemiptera: Aleyrodidae) among eggplant varieties. *PLoS ONE* 11: 153880.
- Idrisov KA (2022). Legumes: Importance of soybean and mungbean in increasing soil fertility. *Manual Fergana* 158–160.
- Kim SK, Nair RM, Lee J, Lee SH (2015). Genomic resources in mungbean for future breeding programs. *Front. Plant Sci.* 6: 626.
- Khamraev N, Nurmetova F, Ashirov M, Doschanov J, Shavkiev J, Jumaniyozova L, Rakhimov A, Yunusov O (2025). Plant leaf chlorophyll relationship with yield attributes in rice. *SABRAO J. Breed. Genet.* 57(1): 105-114. http://doi.org/10.54910/sabrao2025.57.1.1 1.
- Kwon SH, Torrie JH (1964). Heritability and interrelationship among traits of two soybean population. *Crop Sci.* 4:194–202.
- Muthuswamy A, Jamunarani M, Ramakrishnan P (2019). Genetic variability, character association and path analysis studies in green gram (*Vigna radiata* (L.) Wilczek). *Int. J. Curr. Microbiol. Appl. Sci.* 8: 1136–1146.
- Nair R, Schreinemachers P (2020). Global status and economic importance of mungbean. In: The Mungbean Genome (1–8), Springer: Cham, Switzerland.
- Narimonov A, Azimov A, Yakubjanova N, Shavkiev J (2023). Scientific basis of cotton seed germination in the Central Region of Uzbekistan. *SABRAO J. Breed. Genet.* 55(5): 1561–1572. http://doi.org/10.54910/sabrao2023.55.5.10.
- Rajabov Z, Azimov A, Shavkiev J, Narimanov A, Xotamov A (2024). Yield and yield component traits of the new Niyat variety of cotton under field conditions in the Khorezm region of Uzbekistan. *J Wildlife Biodiverse*. 8(3): 213–222. https://doi.org/10.5281/zenodo.11530879.
- Roychowdhury R, Datta S, Gupta P, Jagatpati TAH (2012). Analysis of genetic parameters on mutant populations of mungbean (*Vigna radiata* L.) after ethyl methane sulphonate treatment. *Not. Sci. Biol.* 4. 137–143.

- Sagar T, Venkatarao P, Gautam C (2017). Varietal screening of mungbean cultivars for resistance/tolerance against insect pest under Terai Agro-ecological zone of West Bengal. *Int. J. Plant Prod.* 10: 7–13.
- Sandhu K, Singh A (2021). Strategies for the utilization of the USDA mung bean germplasm collection for breeding outcomes. *Crop Sci.* 61: 422–442.
- Sarkar M, Kundagrami S (2016). Multivariate analysis in some genotypes of mungbean [Vigna radiata L.) Wilczek] on the basis of agronomic traits of two consecutive growing cycles. Legume Res. 39: 523–527.
- Sen M, De DK (2017). Genetic divergence in mungbean. *Legume Res. Int. J.* 40: 16–21.
- Steel RGD, Torrie JH, Dicky DA (1997). Principles and Procedures of Statistics, a Biometrical Approach. 3rd Edition. McGraw Hill, Inc. Book Co., New York. 352–358.
- Tantasawat PA, Khajudparn P, Prajongjai T, Poolsawat O (2015). Heterosis for the improvement of yield in mungbean [Vigna radiata L. Wilczek]. Genet. Mol. Res. 14: 10444–10451.
- Tian Y, Shuai Y, Shao C, Wu H, Fan L, Li Y, Chen X, Narimanov A, Usmanov R, Baboeva S (2023). Extraction of cotton information with optimized phenology-based features from sentinel-2 images. *Remote Sensing* 15(8): 1988. https://doi.org/10.3390/rs15081988.
- Yeginbay A, Alpamyssova G, Yelemanova Z, Narymbayeva Z, Daulbay A, Pernebekova R, Abduvaliev BA, Burabaev A, Burabaev A, Narimanov A (2023). Molecular genetic analysis of the ICE1 gene in Arum korolkowii Regel. *Casp. J. Environ. Sci.* 21: 1143–1149.
- Yeginbay A, Aripova S, Abubakirova A, Mutalova M, Aitkulova R, Akhmadaliev BJ, Burabaev A, Burabaev A, Narimanov A (2024). Biology of the medicinal plant Arum korolkowii Regel (Arum). *Plant Sci. Today* 11(1): 602–605.