

SABRAO Journal of Breeding and Genetics 57 (2) 608-617, 2025 http://doi.org/10.54910/sabrao2025.57.2.19 http://sabraojournal.org/ pISSN 1029-7073; eISSN 2224-8978

CHROMOSOMES MAP, FUNCTION, CLASSIFICATION, AND GENE DETECTION IN PROSO MILLET (*PANICUM MILIACEUM* L.)

M.A. KHALAF and M.KH. JABBAR^{*}

Faculty of Agriculture, Al-Qasim Green University, Iraq *Corresponding author's email: dr.mundher80@agre.uoqasim.edu.iq Email address of co-author: maha.adel@agre.uoqasim.edu.iq

SUMMARY

Molecular information has been available about the genome of proso millet (*Panicum miliaceum* L.), which include about 18 nucleus' chromosomes, one chloroplast chromosome, and more than 100 main genes with a total sequence length of proso millet 854,793,052 nucleotides. All chromosomes also differed in total length, ungapped length, Scaffold N50, and spanned gaps, however, did not differ in scaffold count and unspanned gaps. All genes in the genomic classification resulted into 17 groups according functions. Therefore, some genes encode functional enzymes with links to organelles in the cytoplasm and inside the nucleus to perform a specific function or structural proteins involved in plant biosynthesis. The 17 groups observed had main functions of the protein (ribosomal RNA protein, ATP synthase enzyme, NADH-plastoquinone oxidoreductase enzyme, cytochrome protein, photosystem, ribosomal Protein L, ribosomal Protein S, RNA polymerase, tRNA protein, Hypothetical chloroplast RF, and single proteins). The genes also differed in size, and the smaller gene included 65 nucleotides, while the bigger gene included 2883 nucleotides. The local variety of millet grown in Iraq possesses most genes registered among the international millet varieties of the Gene Bank, according to the National Center for Biotechnology. This study validated such results of gene detection.

Keywords: Proso millet (*P. miliaceum* L.), molecular studies, gene map, chromosomes, gene functions, nucleotides, proteins

Key findings: The presented molecular study detected 17 functional gene groups in the local cultivar of Proso millet (*P. miliaceum* L.).

Communicating Editor: Dr. A.N. Farhood

Manuscript received: April 02, 2024; Accepted: August 8, 2024. © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2025

Citation: Khalaf MA, Jabbar MKH (2025). Chromosomes map, function, classification, and gene detection in proso millet (*Panicum miliaceum* L.). *SABRAO J. Breed. Genet.* 57(2): 608-617. http://doi.org/10.54910/sabrao2025.57.2.19.

INTRODUCTION

(Panicum miliaceum Proso millet L.) domestication occurred around 10,000 years ago in Northern China. This self-pollinated allotetraploid crop is a climate-resilient and human health-promoting cereal (Khound et al., Molecular genetics refers to 2022). а fundamental theory alleging genes direct all life processes through the production of polypeptides. Sometimes, it is a more modest basic theory about the expression and regulation of genes at the molecular level, and occasionally, an investigative approach based on strategies grounded on the basic theory about genes (Waters, 2013; Al-Fatlawi and Jabbar, 2023). In the present era, current studies included chromosomes and genes' information as molecular additions (Orlando, 2000; AL-Hilfi et al., 2020).

In crop plants, various studies have been progressive related to plant molecular biology, especially in field crops, such as, wheat, barley, and maize, with these crops used for food, forage, and other purposes. Millet is one of the grass forage crops, and its grains serve as bird feeds, while the green plant parts as cattle forage (Zhang et al., 2019). It has the highest and fast growth with high yields, completing the vegetative growth in 30 days. Therefore, it gives several mowing in a crop season in Iraq. Moreover, less breeding research and improvement programs have transpired because of the insufficient information about its genetic material and the knowledge on the genes involve in the plant biology.

The proso millet genome consists of more than 100 genes. The sequence of genetic material is about 854,793,052 base pairs, and ungapped length the total is about 837,869,052 base pairs; however, it does not have a gap between scaffolds. The number of scaffolds consists of 1306, and the scaffold N50 consists of 46,661,915, while scaffold L50 is only eight. The number of contigs is from 5537, which included contig N50, consisting of 368,640, and contig L50 consisted of 423. A total number of chromosomes are about 19, and the number of component sequences (WGS or clone) is about 1306 (SCPS, 2018).

The millet genomics included 136 distributed aenes among the various chromosomes found in the nucleus and the cytoplasm. All the genes have their own biological functions and divided into two types, according to mRNA molecules, to translate to a functional protein called enzymes (Kalinova and Moudry, 2006; Zimmermann et al., 2013). Several studies on nucleotides of the millet genome have proceeded, with the first study conducted in 1992 (Taniguchi et al., 1992). However, as per the literature, the last study on millet genome was unpublished; although, its introduction continued in the College of Bioengineering, Shanxi University, China (Shen et al., 2018). The pop set about 30 and the bio projects have studied 22 projects, and the biosamples have registered 450 (NCBI, 2018).

Genetic studies about the genes of proso millet are limited, and therefore, little information relates to the genome of the crop. Therefore, the promising study ensued to conduct and get an aide-mémoire booklet, including information about the proso millet genome.

MATERIAL AND METHODS

Genetic material and procedure

The presented study began in the Laboratory of the Department of Field Crops, Al-Qasim Green University, Iraq. The planting of proso millet seeds in special soil reached harvest after 15 days, with the plant leaves taken for RNA extraction.

RNA extraction

Ribonucleic acid (RNA) extraction was the first step in studying the gene's expression. Different types of RNA molecules include the messenger RNA (mRNA), ribosomal RNA (rRNA), and small interfering RNA (siRNA). The mixture of total RNA was generally evident in the proso millet leaves and shoots samples. The TRIzol® protocol used for RNA extraction from the leaf had the general RNA extraction from three sources: tissues, adherent cells, and suspension cells. The protocol proceeded according to the TRIzol® RT FDmix Kit (Wizbiosolution, Seongnam, South Korea).

Reverse transcriptase

Conversion of the total single-stranded RNA into complementary DNA (cDNA) progressed according to the protocol of WizScript RT FDmix Kit (Wizbiosolution, Seongnam, South Korea).

Reaction, thermal cycling program, and primers

Using the standard Kit application for a single reaction started by adding only water and placing the RNA on a template to the RT FDmix (Hexamer) tube. The reaction components appear in Table 1. Carrying out the thermocycler program followed the procedure of the FDmix Kit (Table 2). Immediately, using the synthesized cDNA as a product, continued with the product prepared for PCR electrophoresis material (Xiang *et al.*, 2007). The used primers are available in Table 3. The genes' amplification happened in Real-time PCR, and then, transferred a product for the detection of genes through electrophoresis.

Chromosomes and other genes

The study sent samples of the local proso millet grown in Iraq to the Biotechnology Center in China for evaluation. Detection and tests ensued there, providing the data on chromosomes and other genes that had been undetected in Iraq.

Table 1. Reaction components for converting single-strand RNA to complementary DNA (cDNA).

No.	Reagent	Volume
1.	RT_FDmix (Hexamer)	1 tube containing all components for the reaction
2.	Primers	1 µL in all primer
3.	Template RNA	< 5 μL
4.	RNase free water	Up to 20 µL

Table	2.	Thermal	cyclina	program	for	conversion	of F	RNA	into	cDNA.
Tubic	<u> </u>	mermun	cycning	program	101	011101131011	01.1	111/1	nico	CDINA

Stage	Temperature (°C)	Time	Cycle No.
cDNA synthesis	50	20 min.	Hold
Denaturation Initial	95	10 min.	Hold
Denaturation	95	30 s	
Annealing	62	30 s	
Extension	72	1 min.	35
Extension	72	5 min.	Hold

Table 3. Primers and gene size were studied in the Proso millet. (Nie et al., 2018; Zou et al., 2019).

Gene name	Forward Primer (5'-3')	Reverse Primer (5'-3')
atpE	AGCACHCCHSARATGTGGC	CGDGGHAYRTGRTACCATC
ndhC	TAACTCACCTCAACTCGCTC	AACAGCACCTGAAGTTACCA
petA	ATGCTCGAGAAGATTGCTGA	ACAGGTCCAAATGGCATGTA
psaC	GGATGTCCACTCTTCCAGAC	GCTCAATGGTAACCAATAGG
rpl14	GGTTTAAGCGGTGAAGTTG	TTGTCCAATTCCTTGAGGA
psbH	AAGCTGCTCTTGCCTATGAT	CTGCTAGTTGGTGAGGCATA
rpoA	GATGCACGATTTCGCCATAA	GGTGGAAGCAGAAACAATCC
rps8	CATACCGTGAGCAAAACAGG	GGCAATGAAACTGATGCACT
trnA-UGC	TCAAACCCACCCATGTCTTC	CGCGTGAGTGTGGTAATCTG
ysf 4	CTCCGGTGAAATCCATCATC	TTGCAGCGGAAGAACAAATA

RESULTS AND DISCUSSION

Chromosome map and description

The results showed the proso millet (P. *miliaceum*) aenome consisted of 19 chromosomes, including 18 chromosomes in the nucleus and one chromosome in the chloroplast, where all chromosomes differed in total length (Table 4). The first chromosome was the largest, comprising 69,183,459 nucleotides, while the 18th chromosome was of smaller length (32,237,550 nucleotides). The one chromosome found in chloroplast showed the length of about 9,477,950 nucleotides. The count was similar in all the scaffold chromosomes by giving the unity (1) value. the ungapped length However, of chromosomes was different; the first chromosome provided the highest length of 67,843,739 compared with the 18th chromosome, which gave an ungapped length of 32,044,379, while the chloroplast chromosome length gave 9,477,950.

The scaffold N50 was the highest in the first chromosome (69,183,459) and the lowest in the 18th chromosome (32,237,550). The

chromosome found in the chloroplast provided 28,187 scaffold N50s. The spanned gaps were 85 in the first chromosome and the least was 29 in the eighth chromosome. The unspanned gaps were unidentifiable. Plant species vary in the number of chromosomes due to their genetic material content. A noticeable constant chromosome number of 2n = 18 among the genotypes of proso millet existed, regardless of their sources. However, despite differences in chromosome number, the basic chromosome number x = 9 has remained for this species. Previous indicated the reports basic chromosome number in Pennisetum varies, from x = 5, x = 7, x = 8, and x = 9 (Harlan and de Wet, 1971; Morakinyo and Adebola, 1991; Techio et al., 2006). Proso millet belongs to the x = 9 group, and thus, study findings are consistent with previous reports. Polyploidy is an important phenomenon that can play a role in genome rearrangement, reproductive adaptation, isolation, and ultimately, species. It is crucial in plant breeding because it can affect hybridization, fertility, and gene expression (Adams and Wendel, 2005).

Moloculos	Total	Scaffold	Ungapped	Scaffold	Spanned	Unspanned
Molecules	Length	Count	Length	N50	Gaps	Gaps
All	848,351,880	466	838,886,533	48,259,421	829	0
Chromosome 1	69,183,459	1	67,843,739	69,183,459	85	0
Chromosome 2	61,153,219	1	60,497,902	61,153,219	59	0
Chromosome 3	57,970,102	1	57,341,442	57,970,102	50	0
Chromosome 4	56,286,655	1	55,895,376	56,286,655	34	0
Chromosome 5	54,126,031	1	53,410,514	54,126,031	52	0
Chromosome 6	52,839,179	1	52,069,300	52,839,179	46	0
Chromosome 7	51,234,605	1	50,270,538	51,234,605	67	0
Chromosome 8	48,259,421	1	48,045,998	48,259,421	29	0
Chromosome 9	45,112,342	1	44,590,768	45,112,342	70	0
Chromosome 10	44,648,547	1	44,079,361	44,648,547	53	0
Chromosome 11	43,177,482	1	42,827,818	43,177,482	30	0
Chromosome 12	42,466,157	1	42,020,767	42,466,157	30	0
Chromosome 13	40,720,392	1	40,083,665	40,720,392	50	0
Chromosome 14	38,490,750	1	38,190,433	38,490,750	32	0
Chromosome 15	34,360,906	1	34,225,472	34,360,906	34	0
Chromosome 16	33,613,985	1	33,444,542	33,613,985	45	0
Chromosome 17	32,993,148	1	32,526,569	32,993,148	25	0
Chromosome 18	32,237,550	1	32,044,379	32,237,550	38	0
Unplaced	9,477,950	448	9,477,950	28,187	0	0

Table 4. The description of the chromosomes included their length, scaffold, and gaps.

Gene map, classification, and functions

In proso millet, the genes' division into two types depended upon the sites, genes in the nucleus, and genes in cytoplasm, such as, in chloroplast, ribosomes, and mitochondria. All the gene transcripts can build the proteins (enzymes). The gene map of proso millet appears in Table 5 and discussed herein.

- Four ribosomal RNA genes transcript ribosomal RNA gr proteins identified and named as 5S, 4.5S, 23S, and 16S, which is one of the ribosomal groups;
- Six ATP synthase enzymes found in the proso millet genome (CF1 alpha subunit, CF1 beta subunit, CF1 epsilon subunit, CF0 subunit I, CF0 subunit II, and CF0 subunit IV) transcripted from ATP (adenosine triphosphate) genes. These ATP enzymes showed as responsible for the energy synthesis (Nie et al. 2018);
- The *cem-A* gene is responsible for the chloroplast envelope membrane from a protein named chloroplast envelope membrane protein;
- One protease enzyme named Clp protease proteolytic subunit transcript from the *ClpP* gene. This protein appeared in the ribosome, and peptide chain connection was its function;
- One gene (EHI_096750) transcripted Alanine aminotransferase, a putative protein. It was a recognized transporter enzyme to alanine (Yoshimura *et al.*, 2005);
- The *infA* gene is an important gene as a co-factor. It transcripts translational initiation factor-1 protein enter in genomic transcription;
- The matK gene transcripts two enzymes responsible for plant maturity, named maturase. This enzyme enters in the maturity process in crop plants (Jungcurt et al., 2012);
- Eleven NADH-plastoquinone oxidoreductase subunit proteins incurred transcription from *ndh* genes in subunits (2, 7, 1, 6, 4L, 4, 5, 3, K, J, and I). These proteins function as co-enzymes and participate in the food synthesis from

oxidation and reduction reactions and play an important role in respiration chain to product cell battery (ATP) (Nie *et al.*, 2018);

- The ORF-42 gene is responsible for transcription hypothetical protein and also has multi-functions;
- One gene gives protein enters in genome sequencing and analysis management. This protein named as Pc12g09330 also has multi-functions (Van *et al.*, 2008);
- There are five cytochrome proteins transcript from different genes (petA, petG, petL, petN, and ccsA). These proteins received the names Cytochrome f, Cytochrome b6/f complex subunit V, Cytochrome b6/f complex subunit VI, and Cytochrome c heme attachment protein. They function as transporters in the cell;
- There are 20 genes transcript photosystem proteins. These proteins enter in the photosynthesis process (Kiel *et al.*, 2006);
- The *rbc*L gene transcript enzyme named Ribulose 1,5-bisphosphate carboxylase/oxygenase. These genes are responsible for oxidation and carboxylation processes (Zou *et al.*, 2019);
- Twenty-two gene types (rpl and rps) emerged responsible for transcription mRNA, which translates ribosomal protein types (L and s). These proteins have many functions and connected with the translation of mRNA in ribosomes (Nie *et al.*, 2018);
- Four rpo gene transcript RNA polymerases were notably highly crucial for cell division and DNA transcription (Lie *et al.*, 2016);
- There were 21 *trnA* genes, which transcript the tRNA proteins, and also responsible for the translation of mRNA molecules in the ribosomes (Haas *et al.*, 1997);
- The *vcf* genes transcript four hypothetical chloroplast proteins and one non-chloroplast protein named hypothetical protein found in ribosome s12. These proteins also enter the photosynthesis process (Van *et al.*, 2008).

No.	Name of Gene	Gene size	Protein size	Product	No.	Name of	Gene size	Protein size	Product
		(the unit =	(aa: amino			Gene	(the unit =	(aa: amino	
		nt:	acid)				nt:	acid)	
		nucleotide)					nucleotide)	,	
1.	A3271 ar004	121nt	39 aa	5S ribosomal RNA	54.	rbcL	1431 nt	476 aa	Ribulose 1,5 -bisphosphate
									carboxylase / oxygenase
2.	A3271_gr003	95 nt	30 aa	4.5S ribosomal RNA	55.	rpl 2	1482 nt	273 aa	ribosomal Protein L 2
3.	A3271_gr002	2883 nt	960 aa	23S ribosomal RNA	56.	rpl14	412 nt	123 aa	ribosomal protein L14
4.	A3271_gr001	1492 nt	496 aa	16S ribosomal RNA	57.	rpl16	1411 nt	469 aa	ribosomal protein L16
5.	AtpA	1524 nt	507 aa	ATP synthase CF1 alpha subunit	58.	rpl 20	139826 nt	119 aa	Ribosomal Protein L20
6.	AtpB	1497 nt	498 aa	ATP synthase CF1 beta subunit	59.	rpl22	450 nt	149 aa	ribosomal protein L22
7.	AtpE	414 nt	137 aa	ATP synthase CF1 epsilon subunit	60.	rpl 23	282 nt	93 aa	Ribosomal Protein L 23
8.	AtpF	1382 nt	188 aa	ATP synthase CF0 subunit I	61.	rpl 32	192 nt	63 aa	Ribosomal Protein L32
9.	atpH	246 nt	81 aa	ATP synthase CF0 subunit III	62.	rpl 33	139826 nt	66 aa	Ribosomal Protein L33
10.	atpI	744 nt	247 aa	ATP synthase CF0 subunit IV	63.	rpl36	114 nt	37 aa	ribosomal protein L36
11.	ccsA	969 nt	322 aa	Cytochrome c heme attachment	64.	rpoA	1020 nt	339 aa	RNA polymerase alpha subunit
				protein					
12.	cemA	693 nt	230 aa	chloroplast envelope membrane protein	65.	rpoB	3228 nt	1075 aa	RNA polymerase beta subunit
13.	ClpP	651 nt	216 aa	Clp protease proteolytic subunit	66.	rpoC1	2052 bp	683 aa	RNA polymerase beta
14.	EHI_096750	1452 nt	483 aa	Alanine aminotransferase, putative	67.	rpoC2	4575 nt	1524 aa	RNA polymerase beta' subunit
15.	infA	324 nt	107 aa	translational initiation factor 1	68.	rps2	711 nt	236 aa	ribosomal protein S2
16.	matK	1902 nt	513 aa	Maturase	69.	rps3	675 nt	224 aa	ribosomal protein S3
17.	ndhA	2095 nt	357 aa	NADH-plastoquinone oxidoreductase subunit 1	70.	rps4	606 nt	201 aa	ribosomal protein S4
18.	ndhB	2243 nt	510 aa	NADH-plastoquinone oxidoreductase subunit 2	71.	rps8	411 nt	136 aa	ribosomal protein S8
19.	ndhC	401 nt	120 aa	NADH-plastoquinone oxidoreductase	72.	rps11	432 nt	143 aa	ribosomal protein S11
20.	ndhD	1503 nt	500 aa	NADH-plastoquinone oxidoreductase	73.	rps14	312 nt	103 aa	ribosomal protein S14
21.	ndhE	306 nt	101 aa	NADH-plastoquinone oxidoreductase	74.	rps 15	237 nt	78 aa	Ribosomal Protein s 15
22.	ndhF	2301 nt	766 aa	NADH-plastoquinone oxidoreductase	75.	rps 15	273 nt	78 aa	Ribosomal Protein S15
23.	ndhG	531 nt	176 aa	NADH-plastoquinone oxidoreductase	76.	rps16	1096 nt	364 aa	ribosomal protein S16
24.	ndhH	1182 nt	393 aa	NADH-plastoquinone oxidoreductase	77.	rps 18	492 nt	163 aa	Ribosomal Protein S18
25.	ndhJ	480 nt	159 aa	NADH-plastoquinone oxidoreductase subunit J	78.	rps 19	282 nt	93 aa	Ribosomal Protein s 19

Table 5. The genes, protein size, and product in Panicum miliaceum L.

Table 5. (cont'd.)

No.	Name of	Gene size	Protein size	Product	No.	Name of	Gene size	Protein size	Product
	Gene	(the unit =	(aa: amino			Gene	(the unit =	(aa: amino	
		nt:	acid)				nt:	acid)	
		nucleotide)	,				nucleotide)		
26.	ndhK	750 nt	249 aa	NADH-plastoquinone oxidoreductase	79.	rps 7	471 nt	156 aa	Ribosomal Protein S7
				subunit K		P -			
27.	Ndhl	543 nt	180 aa	NADH-plastoquinone oxidoreductase subunit I	80.	rps12	375 nt	124 aa	Ribosomal Protein s 7
28.	orf 42	174 nt	57 aa	Hypothetical protein	81.	trnA-UGC	883 nt	293 aa	tRNA protein A for UGC codon
29.	Pc12g09330	1056 nt	397 aa	Pc12q09330	82.	trnC-GCA	71 nt	22 aa	tRNA protein C for GCA codon
30.	petA	1003 nt	320 aa	Cyochrome f	83.	trnD-GUC	74 nt	23 aa	tRNA protein D for GUC codon
31.	petG	114 nt	37 aa	Cytochrome b6/f complex subunit V	84.	trnE-UUC	73 nt	23 aa	tRNA protein E for UUC codon
32.	petL	96 nt	31 aa	Cytochrome b6/f complex subunit VI	85.	trnF-GAA	73 nt	23 aa	tRNA protein F for GAA codon
33.	petN	90 nt	29 aa	cytochrome b6/f complex subunit VIII	86.	trnfM-	54 nt	17 aa	tRNA protein fM for CAU codon
						CAU			
34.	psaA	2253 nt	750 aa	photosystem I P700 apoprotein A1	87.	trnG-UCC	71 nt	22 aa	tRNA protein G for UCC codon
35.	psaB	2205 nt	734 aa	photosystem I P700 apoprotein A2	88.	trnH-GUG	75 nt	24 aa	tRNA protein H for GUG codon
36.	psaC	246 nt	81 aa	Photosystem I subunit VII	89.	trnI-CAU	74 nt	23 aa	tRNA protein I for CAU codon
37.	psaJ	135 nt	44 aa	Photosystem I subunit IX	90.	trnK-UUU	2542 nt	846 aa	tRNA protein K for UUU codon
38.	Psal	111 nt	36 aa	Photosystem I subunit VIII	91.	trnL-CAA	81 nt	26 aa	tRNA protein L for CAA codon
39.	psbA	1062 nt	353 aa	Photosystem II protein D1	92.	trnM-CAU	73 nt	23 aa	tRNA protein M for CAU codon
40.	psbB	1527 nt	508 aa	photosystem II CP47 chlorophyll	93.	trnN-GUU	72 nt	23 aa	tRNA protein N for GUU codon
				apoprotein					
41.	psbC	1422 nt	473 aa	photosystem II CP43 chlorophyll apoprotein	94.	trnP-UGG	75 nt	24 aa	tRNA protein P for UGG codon
42.	psbD	1062 nt	353 aa	photosystem II protein D2	95.	trnQ-UUG	73 nt	23 aa	tRNA protein Q for UUG codon
43.	psbE	252 nt	83 aa	Photosystem II cytochrome b559 alpha subunit	96.	trnR-ACG	74 nt	23 aa	tRNA protein R for ACG codon
44.	psbF	120 nt	39 aa	Photosystem II cytochrome b559 beta subunit	97.	trnS-GCU	88 nt	28 aa	tRNA protein S for GCU codon
45.	psbH	222 nt	73 aa	photosystem II phosphoprotein	98.	trnT-GGU	65 nt	20 aa	tRNA protein T for GGU codon
46.	psbI	156 nt	51 aa	photosystem II protein I	99.	trnV-GAC	72 nt	23 aa	tRNA protein V for GAC codon
47.	psbJ	123 nt	40 aa	Photosystem II protein J	100	.trnW-CCA	74 nt	23 aa	tRNA protein W for CCA codon
48.	psbK	186 nt	61 aa	photosystem II protein K	101	.trnY-GUA	84 nt	27 aa	tRNA protein Y for GUA codon
49.	psbL	117 nt	38 aa	Photosystem II protein L	102	.ycf 3	1988 nt	661 aa	Hypothetical chloroplast RF 34
50.	psbM	105 nt	34 aa	photosystem II protein M	103	.ycf 15	300 nt	99 aa	Hypothetical chloroplast RF 15
51.	psbN	132 nt	43 aa	photosystem II protein N	104	.ycf 68	405 nt	134 aa	Hypothetical chloroplast RF68
52.	psbT	111 nt	36 aa	photosystem II protein T	105	.ysf 4	558 nt	185 aa	Photosystem I assembly protein y c f
53.	psbZ	189 nt	62 aa	photosystem II protein Z					•

Plant species vary in their content of genetic groups. Proso millet is characteristic of lacking genetic groups, with only 17 groups being identified. Hence, it classifies as a genetically poor plant species. This is a direct impact on the morphological composition of the plant, as an herbaceous plant with a short life cycle of less than two months with limited economic yield (Khound et al., 2022; Francis et al., 2023). Thus, the study indicates the plant can contribute in the genetic improvement introducing other programs by genes unavailable in the plant genome. Energy genes play an influential role in increasing the progress and speed of vegetative growth of the plant. The millet crop has a short period of vegetative growth due to its content of genes, helping it do so. Therefore, this plant can be a source of genes in gene transfer experiments (Nie et al., 2018). Additionally, about 20 genes

are responsible for photosynthesis, giving a great impetus to the number of enzymes and proteins responsible for this process, and is, therefore, a physiologically considered resource for providing large quantities of sugar (Kiel *et al.*, 2006).

Gene detection

The results further revealed genes 1-6 appeared in proso millet plants (Figure 1). The size of *atpE*, *ndhC*, *rpl14*, and *rps8* genes were 138, 121, 124, and 137 bp, respectively, while *psaC* and *psbH* genes showed the sizes of 82 and 74 bp, respectively. The two other genes (*petA* and *rpoA*) detected gave the sizes of 321 and 340 bp, respectively (Figure 2). However, the *trnA-UGC* and *ysf4* genes did not appear in local proso millet plants.

Figure 1. Gel electrophoresis (1% agarose, 7 V/cm for 90 min) of all genes detected in Proso millet, first line: 50 bp DNA ladder, lines (2, 3, 4, 5, and 6) positive results in *atpE*, *ndhC*, *rpl14*, *rps8*, *psaC*, and *psbH* genes.

Figure 2. Gel electrophoresis (1% agarose, 7 V/cm for 90 min) of all genes detected in Proso millet, first line: 50 bp DNA ladder, lines (2, 3) positive results in (*petA*, *rpoA*) genes, lines (4, 5) negative results in (*trnA-UGC*, *ysf 4*) genes.

These results distinguish the proso millet cultivar grown in Irag from other international cultivars. Therefore, it is evident from the above figures that eight genes were highly essential in the proso millet cultivars because they appeared in the local cultivar and became registered in the international cultivars. The two genes did not appear in the local cultivar of proso millet, but occurred in other cultivars and registered globally in the NCBI. Therefore, these genes may not necessarily be essential in the proso millet genome (Nethra et al., 2014; Makhmudov et al., 2024). The genes contained in the same plant species vary between genotypes grown from one region to another. The loss or presence of certain genes in a genetic combination does not mean their presence in other combinations of the same species (Van et al., 2008 ; Lie et al., 2016). These are the results the study has revealed to us.

CONCLUSIONS

In proso millet, 17 types of genes emerged, which can serve as a source for this gene type. As the local variety grown in Iraq is an important raw material, it is beneficial in genetic improvement programs according to the results of genetic detection. The main genes will be crucial in molecular plant breeding programs, genetic variations in cultivars of proso millet, and a resource of some genes in transgenic to other plants which lose these genes. The pertinent study provided sufficient information on the proso millet genome for plant breeders to take advantage in molecular plant breeding programs.

REFERENCES

- Adams KL, Wendel J (2005). Novel patterns of gene expression in polyploidy plants. *Trends in Genetics* 21:539–543.
- Al-Fatlawi ZH, Jabbar M Kh (2023). Drought-tolerant *OSCIPK* genes in local aromatic rice cultivars. *SABRAO J. Breed. Genet.* 55 (4) 1351–1358. http://doi.org/10.54910/ sabrao2023.55.4.28.

- AL-Hilfi DR, Athraa A, Al-Malak MK, Al-Ali SJ, Al-Tomah MA (2020). Molecular and ultrastructure study of tight junction during experimental entamoeba spp. infection. *Karbala Int. J. Mod. Sci.* 6(2): 155–163. http://doi.org/10.33640/2405-609X.1507.
- Francis N, Rajasekaran R, Rajagopalan VR, Bakya SV, Muthurajan R, Kumar AG, Alagarswamy S, Krishnamoorthy I, Thiyagarajan Ch (2023). Molecular characterization and SNP identification using genotyping-bysequencing in high-yielding mutants of proso millet. *Front. Plant Sci.* 14 https://doi.org/10.3389/fpls.2023.1108203
- Haas H, Angermayr K, Zadra I, Stöffler G (1997). Overexpression of NreB, a new GATA factorencoding gene of *Penicillium chrysogenum*, leads to repression of the nitrate assimilatory gene cluster. *J. Biol. Chem.* 272(36): 22576–82. http://doi.org/10. 1074/jbc.272.36.22576
- Harlan JR, de Wet JM (1971). Toward a rational classification of cultivated plants. *Taxon* 20:509–517.
- Jungcurt T, Bocksberger G, Brüggemann W, Berberich T (2012). Phylogenetic relationship and molecular taxonomy of African grasses of the genus *Panicum* inferred from four chloroplast DNA-barcodes and nuclear gene sequences. *J. Plant Res.* 126(3): 1–8. https://doi.org/10.1007/ s10265-012-0538-y
- Kalinova J, Moudry J (2006). Content and quality of protein in proso millet (*Panicum miliaceum* L.) varieties. *Plant Foods Hum. Nut.* 61(1): 43–47. https://doi.org/10.1007/s11130-006-0013-9
- Khound R, Sun G, Mural RV, Schnable JC, Santra DK (2022). SNP discovery in proso millet (*Panicum miliaceum* L.) using low-pass genome sequencing. *Plant Direct*. 6(9): https://doi.org/10.1002/pld3.447
- Kiel JAKW, Veenhuis M, van-der-Klei IJ (2006). PEX genes in fungal genomes: Common, rare or redundant. *Traffic* 7(10): 1291–1303. http://doi.org/10.1111/j.1600-0854.2006. 00479.x
- Li C, Dong Y, Liu M, Lu P, Li W, Wang Y, Cui X, Zhou H, Xe Y (2016). Ribosomal ITS sequences and plant phylogenetic inference. *Vegeta. His. Archaeo*. 25: 469-477. http://doi.org/10.1016/S1055-7903(03) 00208-2.
- Makhmudov TKH, Kadirova ZN, Ziyaev ZM, Abdikarimov BQ, Abduvaliev BA, Adilov BSH, Sherimbetov AG, Akhmadaliev BJ, Kurganov SK, Husanov TS (2024). Molecular

characterization of barley yellow dwarf virus (BYDV) isolate T-UZB2 in proso millet (*Panicum miliaceum* L.) in Uzbekistan. *SABRAO J. Breed. Genet.* 56(5): 1758-1768. http://doi.org/10.54910/sabrao2024. 56.5.1.

- Morakinyo JA, Adebola PO (1991). Karyotype analysis and meiotic chromosome behaviour in *Pennisetum americanum*, *P. purpureum and P. pedicellatum. Niger. J. Bot.* 4:127– 134.
- National Center of Biotechnology Information, NCBI (2018). Entrez records of millet (*Panicum miliaceum* L.) include database, direct links and genome information (2018). https://www.ncbi.nlm.nih.gov/Taxonomy/Br owser/ wwwtax.cgi?mode=Info&id=4540
- Nethra N, Gowda R, Prasad SR, Hittalmani S, Ramanjini GPH, Chennakeshava BC (2014) Utilization of SSRs to estimate the degree of genetic relationships in finger millet (*Eleusine coracana* L. Gaertn.) genotypes and subspecies. *SABRAO J. Breed. Genet.* 46: 136–149.
- Nie X, Zhao X, Wang S, Zhang T, Li C, Liu H, Tong W, Guo Y (2018). Complete chloroplast genome sequence of broomcorn millet (*Panicum miliaceum* L.) and comparative analysis with other panicoideae species. *Agron.* 8(9): 159. https://doi.org/10.3390/agronomy8090159
- Orlando V (2000). Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. *Trends in Biochem. Sci.* 25(3): 99–104. https://doi.org/ 10.1016/S0968-0004(99)01535-2.
- Shen L, Cao X, Qiao Z (2018). Submitted (05-SEP-2018) College of Bioengineering, Shanxi University, Taiyuan. Registered in NCBI.
- Shinghai Center of Plant Stress Biology (2018). The genomic of *Panicum miliaceum* L. and chromosome content, BioSample: SAMN08389585, NCBI (2018). https://www.ncbi.nlm.nih.gov/gene/?term= Panicum+miliaceum.
- Taniguchi M, Sawaki H, Sasakawa H, Hase T, Sugiyama T (1992). Cloning and sequence analysis of CDNA encoding aspartate

aminotransferase isozymes from *Panicum miliaceum* L., C4 plant. *Europ. J. Biochem.* 204(2): 611–620.

- Techio VH, Davide LC, Pereira AV (2006). Meiosis in elephant grass (*Pennisetum purpureum*) (Poaceae, Poales) and their interspecific hybrids. *Genet. Mole. Biol.* 29(2):415–423.
- Van DB, Marco A, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJM, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WHM (2008). Genome sequencing and analysis of the filamentous fungus *Penicillium chrysogenum. Nat. Biotech.* 26(10): 1161– 68. http://doi.org/10.1038/nbt.1498
- Waters K (2013). Molecular Genetics. The Stanford Encyclopedia of Philosophy (Fall 2013 Edition), Edward N. Zalta (ed.). https://plato.stanford.edu/archives/fall2013 /entries/molecular-genetics/
- Xiang Y, Huang Y, Xiong L (2007). Characterization of stress-responsive *CIPK* genes in rice for stress tolerance improvement. *Plant Physiol.* 144: 1416–1428.
- Yoshimura Y, Dantzker JLM, Callaway EM (2005). Excitatory cortical neurons form fine-scale functional networks. *Nature* 433(7028): 868–873.
- Zhang D, Panhwar RB, Liu J, Gong X, Liang J, Minxuan LIU, Ping LU, Gao X, Feng B (2019). Morphological diversity and correlation analysis of phenotypes and quality traits of proso millet (*Panicum miliaceum* L.) core collections. *J. Integ. Agric.* 18(5): 958–69 . https://doi.org/ 10.1016/S2095-3119(18)61997-5
- Zimmermann T, Bocksberger G, Brüggemann W, Berberich T (2013). Phylogenetic relationship and molecular taxonomy of African grasses of the genus *panicum* inferred from four chloroplast DNA-barcodes and nuclear gene sequences. *J. Plant Res.* 126:363–71.http://doi.org/10.1007/ s10265-012-0538-y
- Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Rajput S, Deng P, Peng LI, Jia W (2019). The genome of broomcorn millet. *Nat. Commun.* 10(1): 436. https://doi.org/10.1038/s41467-019-08409-5.