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SUMMARY 

 

Various diseases harm the maize crop, but stalk rot has significantly reduced crop yield. The 

susceptible stalk requires identification by pathologists to apply the precise dose of fungicide to the 

crop. Farmers in developing nations faced challenges for their timely hiring. Furthermore, differences 

in pathologists’ professional competencies result in inaccurate diagnoses. In this paper, the 

convolutional neural network (CNN) utilization helped classify the severity levels of stalk rot as 

elaborated in Hooker's scale. The field experiment commenced at the Maize and Millet Research 

Institute Yousafwala, Sahiwal, using a smartphone to get images of resistant and susceptible lines fed 

to the proposed model for evaluation into six severity scales. The model’s overall accuracy was 

83.58%. Recording of the recall ratio of highly susceptible, susceptible, moderately susceptible, highly 

resistant, resistant, and moderately resistant had scores of 1.000, 0.766, 0.966, 0.800, 0.733, and 

1.000, respectively, with an average of 0.877. Precision for highly resistant was 1.000, resistant was 

0.785, moderately resistant was 0.789, moderately susceptible was 0.805, susceptible was 0.958, and 

highly susceptible was 1.000, with an average of 0.889. Highly significant (P < 0.01) results from the 

chi-square test exhibited significant differences between traditional and deep learning approaches. The 

results of the proposed model showed less confusion than the visual-based method. The proposed 

approach is a vital source of detection of resistant lines against stalk rot disease by developing country 

farmers. The suggested model eliminates the need for pathologists, making it a valuable tool for 

identifying stalk rot resistant lines. It aids farmers in finding resistant lines for breeding projects and 

estimating the fungicide dose against stalk rot. It also helps minimize the production cost and 

environmental pollution. 
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Key findings: The proposed model identified the Hooker’s severity scales more accurately than 

farmers’ assessments. It can be an essential tool for resistant line identifications. The study results will 

help to minimize the cost of production and environmental pollution. 

 

 

INTRODUCTION 

 

Among cereal crops, maize (Zea mays) has 

immense significance in Pakistan due to its 

consumption as food and feed. However, 

disease incidents limit a crop’s ability to reach 

its full potential. Among the diseases, stalk rot 

has a detrimental impact on grain yield and 

quality (Jim, 1999; Yang et al., 2002). Small-

scale farmers are particularly vulnerable to 

severe plant diseases as they solely depend on 

the supply of high-yielding crops to exist. 

Although plant diseases threaten food security 

continually, new technologies have significantly 

addressed the global food demands (Albahri et 

al., 2023). Early disease identification and 

severity classification are the main preemptive 

to reach the corn’s full potential. 

 Many conventional-based methods for 

stalk rot severity identification include 

phenotypic selection, while a genotypic-based 

identification method includes PCR techniques, 

which are human-dependable activities 

(Qureshi et al., 2015a, b). A human judgment-

based disease categorization and identification 

are prone to inaccuracy (Reddy et al., 2023). 

Also, visual identification is a meticulous and 

time-consuming task (Petchiammal et al., 

2023). In consulting an expert, farmers have 

to travel great distances, raising further the 

cost of production. However, recent 

developments in computer and mobile 

technology have completely changed the 

situation and minimized the role of humans in 

disease severity identification. The precision 

and speed of computer-aided results have 

shown remarkable improvements in agriculture 

(Owomugisha et al., 2014). Computer-aided 

approaches have become frequent techniques 

for fruit sorting, grading, and defect 

determination (Gomes and Leta, 2012). 

Identifying diseases of sugar cane based on 

lesion-area images began proliferating 

(Upadhye et al., 2022). Maize leaf disease 

studies also run with the help of computer-

aided models using textural features (Kaur et 

al., 2019). A model can gain training via 

supervised learning using labeled data to 

address severity issues (Mehta et al., 2023). 

Although many different supervised learning 

methods exist, convolutional neural networks 

have become extremely important, resulting 

from their image identification success (Ding et 

al., 2023). CNN is the best alternative for plant 

phenotyping due to its automatic extraction of 

desirable areas for detecting diseases (Dechant 

et al., 2017). 

 

Problem statement 

 

Pathologists, experienced farmers, or 

extension workers can visually identify maize 

stalk rot. Small-scale farmers lack the 

information necessary to identify the disease 

assessing its severity. Visual inspection is time-

consuming and offers a possibility for human 

mistakes when diagnosing the disease in its 

early stages. Image processing models can 

easily identify the disease and its severity level 

quickly. A correctly trained CNN will produce 

results quite similar to the precise values. In 

this regard, the project sought to determine if 

CNN can replace human detection for plant 

disease identification, test the viability of 

identifying maize stalk rot based on severity 

scales using convolutional neural networks, 

and compare traditional and deep learning 

techniques in severity scale identification. 

 

 

MATERIALS AND METHODS 

 

The research goal was to create a neural 

network model for identifying severity scales 

and compare them against farmer findings with 

the CNN model, using pathologist findings as a 

standard. For the presented study, the field 

experiment continued at the Maize and Millet 

Research Institute (MMRI) Yousufwala, 

Sahiwal, at 175 masl (latitude of 31°41 north 

and longitude of 73°12 east). Adopting an 

augmented experimental design had seed 
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Figure 1. Stalk rot severity levels. 

 

planting by hand in a 10-meter-long row. 

Planting transpired during spring and autumn, 

maintaining a plant-to-plant distance of 20 cm 

and a row-to-row distance of 75 cm. Standard 

agronomic practices adoption helped protect 

the crop. Plants’ artificial inoculation ensued at 

the tasseling/silking stage. Recording the 

resistance/susceptibility of lines progressed 

after 28 days of injection using Hooker’s 

severity scale (1956) (Figure 1).  

 Image processing techniques require 

the dataset for model training. Dataset 

preparation about severity levels materialized 

in the mentioned field experiment. Collected 

images incurred three divisions, i.e., train, 

validation, and test datasets. Image 

preprocessing and labeling were necessary 

before feeding them to the proposed model. 

Cropping images also minimized the 

computational time of the model. The CNN 

model consisted of a convolutional layer and 

hidden and output layers. The convolutional 

layer was responsible for parameter reduction 

(Figure 2). The hidden layers performed 

different operations on pixel values to draw the 

feature of interest. The output layer is also a 

classifying layer responsible for categorizing 

images into their respective severity classes. 

Probing the reliability of the model used 

accuracy, precision, and recall ratio. 
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Figure 2. Parameter reduction by Convolutional operation. 

 

RESULTS 

 

In Pakistan, visual inspection was the primary 

technique to classify plant diseases. A neural 

network algorithm can categorize diseases 

more accurately than human judgment. The 

model was able to run more quickly, providing 

the severity level of stalk rot at the farmer’s 

doorsteps. The parameters used to determine 

the model’s performance were accuracy, 

precision, and recall ratio. The average 

accuracy of the model was 83.58% at six 

severity scales during validation (Figure 3). 

Figure 4 has an explanation of the loss 

function.  

 The accuracy of the model during 

training and validation appears in Figure 3. 

Fifty was the number of iterations the model 

performed to achieve accuracy. The training 

accuracy was 95%, while the validation 

accuracy was 85% when iterations were 10. 

Training accuracy became 100%, while 

validation accuracy was 85% when iterations 

were 20. The model’s further training remained 

stable up to 50 iterations, but validation 

accuracy fluctuated and became constant at 

83.58%. Figure 4 represents the loss function 

exhibited by the model. Up to 10 iterations, the 

training loss was 0.100, reducing to 0.050 at 

iteration 50. Similarly, validation was 0.395 at 

iteration 10, which increased to 0.410 at 

iteration 50. 
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Figure 3. Accuracy of the classification model for six severity scales. 

 

 

 
 

Figure 4. Loss function of the classification model for six severity scales. 

 

 Recall ratios emerged at 0.800, 0.733, 

1.000, 0.966, 0.766, and 0.760 for the highly 

resistant, resistant, moderately resistant, 

moderately susceptible, susceptible, and highly 

susceptible, respectively, with an average of 

0.877. Precision for highly resistant was 1.000, 

resistant was 0.785, moderately resistant was 

0.789, moderately susceptible was 0.805, 

susceptible was 0.958, and highly susceptible 

was 1.000, with an average of 0.889 (Table 1). 

The mean absolute error was 0.80. The 

confusion matrix provides details on the 

recognized and anticipated categories. Four 

hundred twenty (420) out of 600 images 

became the first to be used to train the model.  

 The training and validation datasets 

had 70 and 30 images for each severity class, 

respectively. Twenty-four images received 

accurate classification as highly resistant, with 

six pictures misclassified as resistant. Eight 

images acquired incorrect categories as 

moderate resistance, while 22 attained the 

correct classification as resistant. Nine images 

received incorrect categorization by the model, 

and 21 images gained proper detection with 

moderate resistance. One image incurred an 

improper category, whereas 29 images of 

moderately susceptible subjects bore the 

correct classification. Seven images sustained 

an inaccurate label as moderately susceptible, 

and 23 images of the susceptible class reached 

appropriate detection. All images of a highly 

susceptible class gained suitable perception 

(Table 2). 

 The study further analyzed the 

differences between the traditional and deep 

learning approaches. The findings of 

pathologists served as the standard. First, 
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Table 1. Classification accuracy of stalk rot severity into six classes 

Severity levels Total 
Classification 

Recall Ratio Precision Accuracy (%) 
Correctly Incorrectly 

Highly Resistant 30 24 6 0.80 1 83.58 

Resistant 30 22 8 0.733 0.625 

Moderately Resistant 30 21 9 0.75 0.724 

Moderately Susceptible 30 29 1 0.966 0.805 

Susceptible 30 23 7 0.766 0.958 

Highly Susceptible 30 30 0 1 1 

Average   0.835 0.852 

Mean Absolute Error 0.80 

 

 

Table 2. Confusion Matrix of six severity classes. 

Input HR R MR MS S HS 

HR 24(80%) 6 0 0 0 0 

R 0 22(73.33%) 8 0 0 0 

MR 0 9 21(70%) 0 0 0 

MS 0 0 0 29 (96.66%) 1 0 

S 0 0 0 7 23 (76.66%) 0 

HS 0 0 0 0 0 30 (100%) 

 

 

Table 3. Severity level evaluation of stalk rot by pathologist, farmer, and deep learning model. 

Treatment 
Severity level evaluation 

Pathologist (check) Farmer Deep learning model 

DR39 HS HS HS 

DR42 HS HS HS 

DR57 HS HS HS 

DR58 MS S MS 

DR59 S HS S 

DR60 S HS S 

DR62 S HS S 

DR68 MS S S 

DR69 S HS S 

DR74 HS S HS 

DR79 HS HS HS 

DR80 MS S MS 

DR81 MS MR MS 

DR85 S MR MS 

Y02 R MR R 

Y05 MR S MR 

Y06 R HR R 

Y12 HR HR HR 

Y13 HR R R 

Y14 R R R 

Y18 R MR R 

Y19 R MR R 

Y22 MR MS MR 

Y24 MR S MR 

Y25 MR MS R 

Y27 R HR R 

Y30 HR R HR 

Y32 HR HR R 

Y35 R MR R 

Y36 R R R 

HR= highly resistant, R= resistant, MR= moderately resistant, MS= moderately susceptible, S= susceptible, HS= highly 

susceptible. 
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Table 4. Comparison of conventional and deep learning techniques in stalk rot severity classification. 

Techniques 
Severity level identification 

Chi-square Value P Value 
correct incorrect 

Pathologist 30 0 

38.67 0.00001** Farmer 08 22 

CNN model 25 05 

CNN= Convolutional Neural Network, ** Highly Significant at P < 0.01. 

 

providing stalks infected with stalk rot 

continued to the farmer for the severity 

evaluation, recording his results. Later on, 

feeding the same stalk to the proposed model 

received scrutiny. The results are available in 

Table 3. The pathologist marked treatments 

(DR59, DR60, and DR62) as susceptible, while 

the farmer incorrectly identified them as highly 

susceptible. The deep learning model correctly 

identified these treatments.  

 The treatments, DR81, DR85, and Y02, 

attained inappropriate assessments from the 

farmers as moderately resistant, while the 

model incorrectly marked DR85 as moderately 

susceptible. The farmer and model mistakenly 

judged Y13, with the Y25 incorrectly identified 

by the farmer as moderately susceptible and 

the model as resistant. Performing a chi-

square test to determine the model’s 

significance showed highly significant 

(0.00001) results (Table 4). 

 

 

DISCUSSION 

 

Feeding stalk image attributes in a computer-

aided model helps categorize the severity of 

the stalk rot disease affecting the maize crop. 

The accuracy, precision, and recall ratio 

received by the convolutional neural network 

verified the model. In Pakistan, farmers often 

use visual examination to determine whether 

the disease is afflicting the stalk. Visual 

approaches have never accurately identified 

stalk rot disease or accurately assessed its 

severity. 

 Compared with the human screening 

procedure, the computer-aided model 

presented in the study produced more reliable 

and steady outputs. In the current age of 

technology, real-time categorization of stalk 

rot severity into various degrees yields the 

most precise and quick findings. Crop stress 

identification and categorization often use 

traditional machine and deep learning 

approaches (Singh et al., 2018; Baer et al. 

2022; Qureshi et al., 2023). The feature 

extraction approach distinguishes these 

methods from each other. Preprocessing and 

labeling ensure model correctness (Panshul et 

al., 2023).  

 Unlike DCNN, which uses convolutional 

layers to automatically extract image features, 

traditional machine learning must segment the 

target images and manually isolate the 

necessary characteristics (Ubbens and 

Stavness, 2017). A CNN detection and 

characterization of biotic and abiotic stress has 

increased significantly in recent years (Singh et 

al., 2018). Compared with conventional 

machine learning techniques, the study of Ma 

et al. (2018) on four cucumber leaf diseases 

revealed that DCNN had a high detection 

accuracy. The significance of the deep learning 

technique, which bases categorization on color, 

texture, and shape, also came from Veeramani 

et al. (2018). In the manuscript, the study 

used a CNN learning-from-scratch technique to 

categorize the stress caused by maize stalk 

rot.  

 The accuracy of the model for 

categorizing severity into six scales was 83.58. 

These outcomes agree with other deep-

learning-based stress studies reported by 

Ferentinos (2018). The number of images 

required to train a CNN model to get the best 

results is challenging to quantify (Kamilaris and 

Prenafeta-Boldú, 2018). Moreover, dataset 

preparation under field and laboratory 

conditions produces different results when 

evaluated under the same CNN model. 

According to Ferentinos (2018), when applying 

a CNN model to laboratory images after being 

trained on photos taken in the field, its 
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accuracy level dropped from 99% to 68%. 

Moshou et al. (2004) studied rust disease in 

wheat using deep-learning model. They got an 

accuracy of 99% in their results. Abdulridha et 

al. (2016) explored the role of CNN in wilt 

disease identification in avocados. They 

reported an accuracy of 98% using a deep 

learning model.  

 Lawrence et al. (2004) studied the 

nematodes of cotton crops using a deep-

learning technique. They claimed 97% model 

accuracy. Li et al. (2009) studied the leaf roller 

disease of rice using an image-processing 

technique. They showed significant 

improvement in the model performance using 

massive preprocessed datasets. They claimed 

the accuracy of 95% of their proposed model. 

Sladojevic et al. (2016) studied different crop 

diseases using a deep-learning technique. They 

reported a model accuracy of 96.3%. 

Oppenheim and Shani (2017) studied the 

potato silver scurf, black dot, common scab, 

and black scurf. They reported accuracy from 

83% to 96% by changing the model’s number 

of iterations.  

 Atole and Park (2018) reported the 

golden apple snail in rice using a deep-learning 

technique and got an accuracy of 91.23%. 

Liang et al. (2019) performed an experiment to 

estimate the severity levels of diseases. They 

got 91% accuracy from their proposed model. 

Their findings are in accordance with this 

study’s findings. Highly significant results from 

the chi-square test showed a significant 

difference among the techniques for the 

evaluation of stalk rot severity. The confusion 

matrix created from the findings of the CNN 

model also endorsed the same results. Our 

findings align with those of Fuentes et al. 

(2017), who noted a significant degree of class 

confusion. 

 

 

CONCLUSIONS 

 

The yield of maize crops in Pakistan is lower 

than in other progressive countries due to a 

late assessment of stalk rot severity in the field 

conditions. Farmers lack expertise in correctly 

identifying and classifying diseases using a 

traditional approach. Compared with the visual 

inspection approach, the proposed model 

offered an automated solution to the issue of 

farmers' difficulties in diagnosing and 

classifying maize stalk rot. Farmers now have 

better tools for more accurate vulnerability 

assessment using the neural network model. It 

minimizes the need for pathologists, extension 

workers, and experienced farmers and 

increases maize productivity. It also helps 

apply accurate fungicides to the field, ensuring 

low production costs and decreasing 

environmental pollution. 
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