TAXONOMIC STUDY OF SOME EUPHORBIA L. SPECIES BY LEAF ANATOMICAL AND MOLECULAR CHARACTERISTICS USING RBCL AND MATK GENES

T.M. TAIB, R.H. ALOUSH*, and A.S.M. AL-SOUFI

Department of Biology, College of Science, University of Tikrit, Tikrit, Iraq
*Corresponding author’s emails: rana_aloush_plant@tu.edu.iq
Email address of co-authors: a-sh.mahmood@tu.edu.iq, ranaha850@gmail.com

SUMMARY

A current study assessed the leaf anatomical and molecular characteristics of eight species of the genus Euphorbia (Euphorbiaceae), i.e., E. craspeda Boiss, E. denticulate Lam., E. falcate L., E. hirta L., E. helioscopia L., E. peplus L., E. kansuensis L., and E. macroclada Boiss, collected from several districts of the Middle and Northern Iraq. The anatomical result refers to a uniseriate epidermis (single layer), except for the species E. kansuensis and E. peplus, wherein the upper epidermis recorded a variable thickness among the species. The highest epidermis thickness (28 µm) was visible in the species E. falcata, while the mean decreased to 17 µm in the species E. helioscopia. Based on the anatomical attributes, further species groupings resulted in two. In the first group, the leaf’s cross-section was unifacial, with the palisade tissues on both sides of the blade. This group included E. hirta, E. peplus, E. macroclada, and E. denticulata. Contrastingly, the second group has a bifacial leaf, with the mesophyll distinguished as palisade and spongy. The said group comprised the E. craspeda and E. helioscopia species. In the genus Euphorbia species, the study of the genetic relationship continued according to the sequencing method of rbcl and matk genes. The results revealed that most species samples showed light bands, characterized by their intensity ranging from 800 to 1000 bp. The highest recorded genetic affinity through the rbcl gene emerged in E. denticulata and E. kansuensis, whereas the lowest was in E. macroclada and E. hirta. Based on matk gene results, the highest genetic affinity observed resulted in the species E. kansuensis and E. denticulata with an average value of 0.0160, with the lowest recorded in the species E. helioscopia and E. peplus with a value of 0.1307.

Keywords: Euphorbia, taxonomy, leaf anatomical traits, rbcl and matk genes sequencing

Key findings: Taxonomic Study, including molecular and anatomy of leaves and anatomical characteristics’ molecular diagnosis, used the rbcl and matk genes to distinguish the eight species of the genus Euphorbia L. (Euphorbiaceae) that grows in the central and northern areas of Iraq. Based on anatomical and genetic similarities and differences, the study results classified the species into various groups.

Communicating Editor: Prof. Naqib Ullah Khan

INTRODUCTION

Euphorbiaceae is the largest family of higher flowering plants, with 300 genera and 8000 species, belonging to the order Euphorbiales, one of the immense orders of angiosperms (Neeraj and Lal, 2019). The family, comprising herbs, shrubs, trees, and sometimes succulent, is characteristic of secreting milky juice (Acharya and Vaidya, 2017). It is also one of the most complex families due to species richness, and several taxonomists have attempted to solve taxonomic problems within the family Euphorbiaceae (Nichodemus and Ekeke, 2021). The family Euphorbiaceae also has five diverse tribes, i.e., Euphorbiaceae, Hippomaneaceae, Hureaceae, Pachystomaleaceae, and Stomatocalyceae. The genus *Euphorbia* belonged to the first tribe, and most of its species are poisonous, irritating to the skin, and contain rubber and milk (Willis, 1973; Thakur and Patil, 2012).

Euphorbia plants can grow well in temperate and tropical regions, adapt to various environments, and show wider differences in growth forms. These plants vary, from annual grasses to perennial trees that have a unique structure of their flowers, and it is a universal genus that has many species in different non-tropical regions, such as, Southern USA, South Africa, the Mediterranean basin, and the Central East (Zahra et al., 2014).

Anatomical traits are critically important in modern taxonomic studies, which often support phenotypic features. Taxonomists gave greater attention to such studies, expanding them to find more qualities that could help them better separate the species, genera, and even families (Aziz et al., 2016; Mohsin et al., 2023). Anatomical data has long been benefitting traditional classification because differences within species, genera, and families are usually a reflection of anatomical features.

Anatomical features of stems, leaf epidermis, stomata, and other traits are helpful in various studies. There has also been remarkable development in the past five decades on vascular plant anatomy and their uses in taxonomy (Ahmad et al., 2010). Findings of Metcalfe and Chalk (1957) revealed the anatomical features of *Euphorbia* found in a wide range of variations in terms of diversity of environments, and no single feature is notable in the various tribes into which the family split. The taxonomy science development also employed several morphological characteristics (Aloush, 2014).

In past studies investigating leaf epidermal features of 50 species of *Euphorbia*, their findings revealed that papillae of different shapes and sizes were evident in these cells, as well as, the different types of stomata and forms of epidermal cells also appeared (Kakkar and Paliwal, 1974). The study of the anatomical features represented by leaf epidermal cells, stomata complexes, and Anisocytic, Paracytic, and Anomocytic stomata complexes had taxonomic significance supporting the phenotypic characteristics in the diagnosis and isolation of the orders of genus *Euphorbia* (Sleibi, 2015). Talebi et al. (2017) conducted a study on the attributes of the leaf epidermis of 18 species of *Euphorbia* in Iran, and their results showed that the type of stomata was similar among all the species.

Determining the relationship between the species is crucial to obtaining better results in biological studies (Ji et al., 2021). The differences and similarities among the species are their genetic relationship evidence, which contributes to understanding the evolutionary relationship. Therefore, several molecular marker techniques have provided detailed information about the genomes, which was also impossible to obtain based on phenotypic classification methods. With the advancement of plant molecular biology in recent years, advances in genetic research have introduced various new marker methods, including targeted and functional genetic markers, which developed several innovative DNA-based marker systems (Sun et al., 2022).
Past genetic research revealed that the taxonomy of species of the family Euphorbiaceae, particularly of the genus *Euphorbia*, is very complex, showing several taxonomic variations compared with the traditional classification, which relied only on morphological parameters (Webster, 1994). Universal coding genes, such as, the plant DNA regions *matK* and *rbcL*, as well as, transcribed internodes, ITS and ITS2, are short strands of DNA that can help identify, discriminate, and assign taxonomy at the family, genera, and species levels (Statast et al., 2016). Therefore, based on the above discussion, the presented study sought to determine the taxonomic relationship among the *Euphorbia* species using the leaf anatomical characteristics and the genetic sequence of *rbcL* and *matK* genes.

MATERIALS AND METHODS

Genetic material and study location

The plant samples collection of the genus *Euphorbia* species occurred during the 2021–2022 season in several Districts of Middle and Northern Iraq. The species included were *E. craspedia*, *E. denticulata*, *E. falcata*, *E. hirta*, *E. helioscopia*, *E. peplus*, *E. kansuensis*, and *E. macroclada*.

Anatomical study

Mature leaves, collected from the plants’ selected species of the genus *Euphorbia*, proceeded with the samples fixed in FAA (formalin-glacial acetic acid-alcohol) (5 ml [40%]:5 ml:90 ml [70%]). Preparing the cross-section of the leaves used the microtome, with the samples stained by safranin (1%) (Aloush, 2014). Anatomical observations performed employed a compound microscope model Novel.

Molecular analysis

DNA extraction

DNA isolated from the plant leaves of the studied genus *Euphorbia* species followed the process according to the CTAB method described by Weigant et al. (1993), obtaining an amount of 50–70 micrograms per 1 g of leaves for each species. The purity ranged between 1.7–2 MS, measured using a nanodrop device, and adjusting the DNA sample dilution to reach a concentration of 50 ng/microliter as the appropriate concentration for conducting PCR reactions. The large size of DNA molecules in plant cells made it difficult to obtain and purify the DNA without being destroyed. There are several ways to separate DNA; however, the method of Weigant and his group is the most appropriate, being characterized by ease and efficiency in the isolation process, as one of the difficulties researchers face in the DNA isolation from plant cells is the thick cell wall surrounded by the cell membrane.

Purifying the DNA from the rest of the cell components had the study employ chloroform: isomyl alcohol (1:24) as an organic solvent that removes CTAB and keeps the DNA in the aqueous phase after centrifugation (Sambrook et al., 1989). Isomal alcohol works to form the foaming resulting from CTAB (Maniatis et al., 2001) and to convert the DNA from the soluble state to the insoluble one, adding cooled isopropanol alcohol followed, which works to precipitate it (Clapp, 1996). Thus, the DNA appears in white dense blocks, then dissolved in a solution (TE) or deionized distilled water and kept at 20 °C temperature until use (Maniatis et al., 2001).

Gel electrophoresis

Genomic DNA samples electrophoreses ensued on a 1% agarose gel to ensure the presence and integrity of the DNA, then compared with the Marker's index by molecular weight (Sambrook et al., 1989).

Polymerase chain reaction

The primers used were from the Korean company BioNEER, as apparent in Table 1. We used the components of the Pre-Mix kit in the PCR. In this study, the volume of the PCR reaction was 20 microliters, with the elements
Table 1. Primers for amplification of rbcl and matk genes.

<table>
<thead>
<tr>
<th>No.</th>
<th>Primer Name</th>
<th>Sequence 5´ → → → 3´</th>
<th>Size (bp)</th>
<th>Annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rbcl</td>
<td>F) TGGTTGCTAACCATAAGG R) ATGGAATGATTGATCGTA</td>
<td>1200–1100 bp</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>Matk</td>
<td>F) GAAGTAGATTGATTTCTC R) TACAGTGTCCATGTACCG</td>
<td>1048 bp</td>
<td>52</td>
</tr>
</tbody>
</table>

required to conduct this reaction supplied by BioNEER in 0.2 ml Eppendorf tubes.

DNA sequencing analysis

Determination of the nucleotide sequence of the amplified gene of the matK and rbcl proceeded in the direction of Forward immediately after obtaining the product of the gene duplication by sending 25 µl of the PCR product and 100 µl of each initiator at a concentration of 17.5 pmol from each initiator to the Korean company, Macrogen. Then, running the results through a computer program on the Internet (BLAST in situ basic search tool for nucleotide sequences) compared them against the database of the National Center for Biotechnology Information (NCBI), which inserts all the nucleotide sequences into the BLAST field to perform alignment, sequence comparison, and sequence matching. The genetic data of the plant samples for diagnosis and knowing their type and genus with the sequences in the previously known and diagnosed indexes helped further convert these sequences into a statistical application that expresses the existence of a significant positive correlation whenever the expected E-Value decreases. Using the MEGAX program processed the sequences received from the company to remove and trim the abnormal successions (Badgujar and Mahajan, 2013).

Genetic tree analysis

Sequence data analysis used the dendrogram based on the genetic dimension. The genetic relationship diagram, prepared based on the genetic dimension table, utilized the UPGMA method (The unweighted pair group method for the arithmetic average) and the MEGAX program (Fayed et al., 2020).

RESULTS AND DISCUSSION

Anatomical study

The results showed that in cross-sections of leaves, the upper and lower epidermis were uniseriate, except for the two species E. kansuensis and E. peplus that have the epidermis as biseriate on both surfaces. The upper epidermal cells were heterogeneous in shape and semispherical-spherical in the species E. macroclada, E. falcata, and E. peplus. However, the species with oval and epidermis covered with a layer of cuticle was at the highest level in E. kansuensis (8 µm), and species E. macroclada, E. falcata, and E. craspedia recorded the lowest mean value (4 µm). The cuticle thickness decreased in the lower epidermis compared with the upper, and the highest mean (5 µm) for that emerged in the species E. kansuensis and E. denticulata.

The value decreased to 2 µm surfaced in the species E. macroclada and E. craspedia. The upper epidermis recording a variable thickness among the species had the highest mean (28 µm) observed in E. falcata, while it decreased to 17 µm in E. kansuensis and E. helioscopia. The maximum thickness of the lower epidermis was 20 µm, which lowered to 11 µm in the species E. craspedia and E. kansuensis. The variations in the tissue pattern among the studied Euphorbia species divided the species into several groups (Table 2, Figures 1 and 2).

In Group 1, the Euphorbia species were characteristic of being unifacial, with the palisade tissue located on both sides of the blade under the upper epidermis and above the lower epidermis. In between these two layers exists a spongy tissue whose cells were spherical-irregular and large, depicting the palisade layer as having more than one row in the five species, i.e., E. hirta, E. peplus, E. macroclada, E. denticulata, and E. kansuensis.
Table 2. Quantitative characteristics of the cross-section of leaf blades in *Euphorbia* species (µm).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Species</th>
<th>Cuticle thickness</th>
<th>Epidermis thickness</th>
<th>Number of rows/Palisade</th>
<th>Palisade thickness</th>
<th>Spongy thickness</th>
<th>The Leaf thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Upper</td>
<td>Lower</td>
<td>Upper</td>
<td>Lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E. macroclada</td>
<td>4</td>
<td>2</td>
<td>23</td>
<td>17</td>
<td>3-2</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>E. hirta</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>15</td>
<td>4-3</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>E. falcate</td>
<td>4</td>
<td>3</td>
<td>28</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>E. craspedia</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>11</td>
<td>4-3</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>E. helioscopia</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>20</td>
<td>5-4</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>E. peplus</td>
<td>7</td>
<td>4</td>
<td>27</td>
<td>13</td>
<td>4-3</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>E. kansuensis</td>
<td>5</td>
<td>3</td>
<td>19</td>
<td>13</td>
<td>4-3</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>E. denticulate</td>
<td>8</td>
<td>5</td>
<td>17</td>
<td>11</td>
<td>5-4</td>
<td>89</td>
</tr>
</tbody>
</table>

Figure 1. Cross-section of leaf blades in *Euphorbia* species.
The results further revealed the presence of air holes in the leaf blade of the species *E. kansuensis*, with the rest of the *Euphorbia* species having more compact tissues (Figures 1 and 2). The Group-2 species illustrates bifacial (Dorsiventral) leaves, distinguishing the mesophyll into two tissues. The palisade layer formed below the upper epidermis had the spongy layer following it. This group comprised two species, viz., *E. craspedia* and *E. helioscopia*.

In Group 3, containing the species *E. falcata*, the tissues were not distinct and heterogeneous, and palisades had spongy tissue, with some milky glands distributed within the tissue in a rhombic to circular shape. The results further showed that the number of rows of palisade cells ranged between 4–5 in the two species, i.e., *E. kansuensis* and *E. denticulata*, while the number of rows decreased to 2–3 in *E. macroclada* and *E. denticulata* that excelled by registering the highest rate of palisade and spongy tissue thickness, which reached 98 μm and 61 μm, respectively. However, the rate decreased at the lowest level for both tissues at 55 μm for the palisade tissue and 35 μm for the spongy tissue in the species *E. macroclada*. The rest of the *Euphorbia* species ranged between these two values; however, no recording of the palisade cells in the species *E. falcata* occurred (Table 2, Figure 1).

Based on the total leaf thickness, *Euphorbia* species can also differ into several groups. The first group has an average leaf thickness of 95–140 μm and includes the three species *E. macroclada*, *E. craspedia*, and *E. falcata*. In the second group, average leaf thickness ranged between 140–185 μm and included the four species *E. hirta*, *E. helioscopia*, *E. peplus*, and *E. kansuensis*. The third group comprised *E. denticulata*, recording a leaf thickness of 215 μm. The concentration of large vascular bundles closed in the midrib region. In general, displaying diagonal rows and the bark forming a strip of several rows, it was in a crescent shape directed toward the lower epidermis. The number of vascular

Figure 2. Cross section of leaf blades in *Euphorbia* species.
bundles differed according to the species. In species *E. macroclada* and *E. falcata*, the number of bundles ranged from 4 to 8. It is worth mentioning that the two species, *E. macroclada* and *E. hirta*, were distinct by the presence of glandular hairs on both leaf surfaces.

The current results were consistent with past findings on the recorded variations in shapes of the epidermal cells of the leaf blades, their thickness and the number of rows, and the average thickness of the upper and lower epidermis cells varying between 18–126 μm in the two *Euphorbia* species *E. macrocarpa* and *E. peplus*, respectively (Sleibi, 2015). The average thickness of the epidermis ranged from 10.8 to 34.6 μm for the upper epidermis and 10.4 to 31.3 μm for the lower epidermis in species *E. prostrata* and *E. denticulata*, respectively. The average thickness of the palisade layer was 183.5 and 117.3 μm in the species *E. kansuensis* and *E. miliii*, respectively, and was indistinct from the rest of the studied *Euphorbia* species. The thickness of the spongy layer ranged from 16.3–222.8 in the species *E. prostrata* and *E. denticulata*, respectively. The leaf blade thickness varied from 84.7 to 319.8 μm in *E. macrocarpa* and *E. kansuensis*, respectively.

Molecular study

The plant contains different amounts of compounds, such as, proteins, phenolic compounds, and polysaccharides, which become contaminants if they get mixed with the isolated nucleic acid, and this leads to the formation of a very viscous liquid, inhibiting PCR reactions (Do and Adams, 1991). The presence of polysaccharides also affects outcomes, especially those that depend on RAPD indicators (Pandey et al., 1996). Hence, making some modifications to obtain an appropriate amount of DNA and good purity to carry out the reactions, and also adding PVP to get rid of phenolic compounds transpired to easily remove them as they stick to the DNA, reducing its purity, affecting subsequent reactions (Porebski et al., 1997).

Manual crushing uses a ceramic mortar to break the plant cell walls while adding liquid nitrogen. The low temperatures (-196) stopped the action of released nuclear enzymes when the walls shattered, with the mixture then directly exposed to a temperature of 65 °C. In the presence of CTAB, which leads to the binding of CTAB with the DNA and the formation of a CTAB-Nucleic acid complex, it replaces the cleaved proteins, keeping the DNA in the aqueous phase, working to prevent it from sedimenting with other components during the subsequent rejection stages. The EDTA substance included in the extraction solution acts as a chelating agent that pulls magnesium ions necessary for the activity of nuclear enzymes that analyze nucleic acids, inhibiting the action of those enzymes (Liabata et al., 2019).

For purifying the DNA from the rest of the cell components, the use of chloroform: isoamyl alcohol (1:24) as an organic solvent aided in removing CTAB and keeping the DNA in the aqueous phase after centrifugation (Sambrook et al., 1989). Isomyl alcohol works to form the foaming resulting from CTAB (Maniatis et al., 2001) and to convert the DNA from the soluble state to the insoluble one attained addition of cooled isopropanol alcohol, which works to precipitate it (Clapp, 1996). Thus, the DNA appears in white dense blocks, then dissolved in a solution (TE) or deionized distilled water and kept at 20 °C temperature until use (Maniatis et al., 2001).

The molecular weight determination of the extracted DNA samples according to the studied primers *rbcl* and *matK* also continued. The results of the relevant study showed that most of the samples provided bands after being electrically transmitted, distinguishable by their intensity, and ranging between 800–1000 bp after comparing them with the DNA Ladder (molecular marker) (Figure 3). The presence of bands with almost the same molecular size indicates that they belong to a single genetic origin, as it gives a clear picture of the strength of interdependence between the different tribes of identical origin (Aloush, 2014). The use of these specialized genes contributed to authenticating the interdependent relationship among the studied *Euphorbia* species.
Figure 3. Electrophoresis of DNA extracted from samples of species belonging to the genus *Euphorbia* using *rbcL* and *matK* (*1*-*E. macroclada* 2-*E. hirta*, 3-*E. falcata*, 4-*E. craspedia*, 5-*E. helioscopia*, 6-*E. peplus*, 7-*E. kansuensis*, and 9-*E. denticulata*). Note: The species’ 8 subspecies was not included in this study.

Figure 4. UPGM dendrogram showing the relationship among species of the genus *Euphorbia* L. according to the *rbcL* gene (*1*-*E. macroclada* 2-*E. hirta*, 3-*E. falcata*, 4-*E. craspedia* 5-*E. helioscopia*, 6-*E. peplus*, 7-*E. kansuensis*, and 9-*E. denticulata*). Note: The species’ 8 subspecies was not included in this study.

Table 3. The genetic distance between species of the genus *Euphorbia* L. according to the *rbcL* gene. (*1*-*E. macroclada* 2-*E. hirta*, 3-*E. falcata*, 4-*E. craspedia*, 5-*E. helioscopia*, 6-*E. peplus*, 7-*E. kansuensis*, and 9-*E. denticulata*). Note: The species’ 8 subspecies was not included in this study.

<table>
<thead>
<tr>
<th>Species</th>
<th>A1_AF</th>
<th>A2_AF</th>
<th>A3_AF</th>
<th>A5_AF</th>
<th>A6_AF</th>
<th>A7_AF</th>
<th>A8_AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2_AF</td>
<td>0.09129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3_AF</td>
<td>0.07290</td>
<td>0.09738</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5_AF</td>
<td>0.07098</td>
<td>0.08553</td>
<td>0.06673</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6_AF</td>
<td>0.05776</td>
<td>0.07949</td>
<td>0.01956</td>
<td>0.05580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7_AF</td>
<td>0.02181</td>
<td>0.08522</td>
<td>0.07047</td>
<td>0.06957</td>
<td>0.05644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8_AF</td>
<td>0.02083</td>
<td>0.08631</td>
<td>0.06942</td>
<td>0.06745</td>
<td>0.05542</td>
<td>0.00278</td>
<td></td>
</tr>
<tr>
<td>A9_AF</td>
<td>0.02084</td>
<td>0.08845</td>
<td>0.06838</td>
<td>0.06950</td>
<td>0.05240</td>
<td>0.00371</td>
<td>0.00278</td>
</tr>
</tbody>
</table>
Genetic relationship

The studied species of the genus *Euphorbia* underwent comparison with the samples recorded in the Gen Bank, confirming their diagnosis (Table 3). According to the indicators of the primer *rbcL*, it revealed that the highest genetic affinity was between the two species *E. denticulata* and *E. kansuensis*, and the anatomical study recorded a similarity of the nature of the mesopholic tissue, where the cross-section of the leaf was unifacial, indicating the similarity in the path of photosynthesis, considering the characteristic as one of the genetic ones. The similarity in the anatomical attributes enhances the results of genetic affinity, while the minimum genetic affinity (highest genetic distance) was evident between *E. macroclada* and *E. hirta*. The *rbcL* has a primary role in determining the paths of photosynthesis for its role in the ribulose-1-phosphate synthesis and counting it as one of the plastid nuclear indicators that provide the common origins between species. Its demonstration in the dendritic diagram specifies the species classified into several groups (Figure 4, Table 3).

The first group included the species *E. hirta*, depicting isolation genetically from the rest of the species. This species was unique in its herbaceous growth, as well as, in its uniqueness in anatomical characteristics, such as, heterogeneity in the shape of the cells on the upper surface of the leaf (irregular) and the internal and external walls. In addition to giving more evidence for stomata on the two leaf surfaces and its distinction with a high rate of the thickness of the leaf blade, it also indicates an increase in the thickness of the palisades and spongy layers and an increase in photosynthetic units associated to the genetic sequence of the starter *rbcL*.

The second group comprised the two species *E. peplus* and *E. falcata*. Notably, the collection areas of the two species were similar, as the two species grew adjacent to each other in the central and northern regions of Iraq. The nature of their growth was herbaceous, and it may indicate genetic similarity and the extent of convergence.

The second group, in turn, has two secondary groups representing it. The first secondary group included the two species, *E. kansuensis*, and *E. denticulata*, and these species were similar in terms of the nature of the mesopholic tissue, as it was unifacial. The results of the current study also support what previous studies have demonstrated on the common monophyletic origin of all the species in the genus *Euphorbia* (Steinmann and Porter, 2002; Bruyns et al., 2006; Zimmermann et al., 2010; Horn et al., 2012).

The significant results were also in analogy with several other past findings that chose *matK* and *rbcL* for studying the genetic affinity and the stages of development of plant families. The Consortium for the Barcode of Life Plant Working Group (CBOL, 2009) considered the *rbcL* and *matK* genes the best genetic region for identifying the plants. The presented results also showed that the primer *matK* is one of the genetic primers that can be reliable for species identification and diagnosis. Table 4 shows that the highest genetic affinity appeared between the species *E. kansuensis* and *E. denticulata*, with a value of 0.0160, whereas the lowest occurring between the two *Euphorbia* species *E. helioscopia* and *E. peplus*, with a value of 0.1307.

The *Euphorbia* species could separate further into several groups and branches (Figure 5). The first secondary group included *E. peplus* and *E. falcata*, being genetically close to each other by 0.055, and characteristic of their herbaceous growth nature and adjacent distribution in the collection areas within the study. The second secondary group splits into two parts. The first secondary group included *E. denticulata* and *E. kansuensis*, recording the highest genetic affinity compared with the rest of the species (Table 4). These two mentioned *Euphorbia* species were similar in rows of palisade cells and the average thickness of the mesophyll tissue, indicating similarity in the developmental characteristics of both species, especially concerning the path of photosynthesis.

The second secondary group also splits into two groups. The first group contained *E. macroclada*, which was genetically isolated.
Table 4. The genetic distance among the species of the genus *Euphorbia* L. according the *matK* gene (1- *E. macroclada*, 2- *E. hirta*, 3- *E. falcata*, 4- *E. craspedia*, 5- *E. helioscopia*, 6- *E. peplus*, 7- *E. kansuensis*, and 9- *E. denticulata*).

<table>
<thead>
<tr>
<th>Species</th>
<th>B3_BF</th>
<th>B4_BF</th>
<th>B5_BF</th>
<th>B6_BF</th>
<th>B7_BF</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3_BF</td>
<td>0.0893</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4_BF</td>
<td>0.0355</td>
<td>0.1114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5_BF</td>
<td>0.0657</td>
<td>0.1078</td>
<td>0.0485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6_BF</td>
<td>0.1012</td>
<td>0.0371</td>
<td>0.1290</td>
<td>0.1307</td>
<td></td>
</tr>
<tr>
<td>B7_BF</td>
<td>0.0289</td>
<td>0.0790</td>
<td>0.0517</td>
<td>0.0843</td>
<td>0.0935</td>
</tr>
<tr>
<td>B9_BF</td>
<td>0.0345</td>
<td>0.0884</td>
<td>0.0548</td>
<td>0.0835</td>
<td>0.0989</td>
</tr>
</tbody>
</table>

Note: The species’ 8 subspecies was not included in this study.

Figure 5. UPGM dendrogram showing the relationship among species of the genus *Euphorbia* L. according to the *matK* gene (1- *E. macroclada*, 2- *E. hirta*, 3- *E. falcata*, 4- *E. craspedia*, 5- *E. helioscopia*, 6- *E. peplus*, 7- *E. kansuensis*, and 9- *E. denticulata*). Note: The species’ 8 subspecies was not included in this study.

This species was distinguishable by the nature of its shrubby growth and a decrease in the average thickness of the mesophyll tissue. The second group included *E. craspedia* and *E. helioscopia*, as genetically the same, indicating the common genetic origin. It is worth noting that these two species have a shrubby and delusional nature of growth. This study also agrees with the findings demonstrated by Dorsey (2013) that the *matK* region is optimal for studying the genetic relationship among the genus *Euphorbia* species.

The results concluded that most of the *Euphorbia* species samples showed the bands after being electrocuted, and these bands were prominent by their intensity ranging from 800 to 1000 bp after comparing them with the DNA Lader. It revealed that the lowest genetic affinity appeared between the species *E. macroclada* and *E. hirta* through the *rbcl* gene, which was a plastid nuclear indicator of a common ancestry between species. The *matK* gene results showed that the highest genetic affinity emerged between *E. kansuensis* and *E. denticulata*, with a value of 0.0160, and the lowest was evident in the two *Euphorbia* species, i.e., *E. helioscopia* and *E. peplus*, with a value of 0.1307.

CONCLUSIONS

The results suggested that anatomical characteristics of the leaf can help identify and classify various species of the genus *Euphorbia*. Some other attributes can serve to
describe the studied species, such as, the tissues’ distribution in blades. The leaf was unifacial in the *Euphorbia* species *E. hirta*, *E. peplus*, *E. macrolepida*, and *E. denticulata*. However, in species *E. craspedioides* and *E. helioscopla*, the leaves were bifacial. Besides anatomical traits, molecular studies provided more accurate results in separating the species based on the genetic similarities and differences between them. The primers *matK* and *rbcL* regions were optimal for studying the genetic closeness among the genus *Euphorbia* species. The investigations through leaf anatomy and molecular markers can better help understand and distinguish the various *Euphorbia* species.

ACKNOWLEDGMENTS

The authors are grateful to the College of Sciences, University of Tikrit, Tikrit, Iraq, for providing the facilities required for the presented investigations.

REFERENCES

Neeraj B, Lal S (2019). A survey of some medicinally important plants of the Euphorbiaceae family used by the Santhal tribes of Santhal...

