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SUMMARY 

 

Maize incurs many diseases, but stalk rot has badly influenced the crop yield. A pathologist, extension 

worker, or experienced farmer can only identify susceptible stalks to determine the accurate 

application of fungicide to the crop. It is rigorous for the farmers of developing countries to hire them 

in time. Moreover, a variation in the views of professionals leads to incorrect findings. In this 

manuscript, pathologists’ discoveries have become a standard to compare the farmer’s detections with 

an intelligent-based model. The Convolutional Neural Network (CNN) employment sought to identify 

the resistant and susceptible stalk against stalk rot. The Maize and Millet Research Institute 

Yousafwala, Sahiwal, was the chosen field for experimentation. Gathering resistant and vulnerable 

images from maize germplasm, having local origins, progressed via a smartphone. The CNN 

architecture’s exploration classified the images into two resistant and susceptible classes. The P value 

(0.00001) calculated by the Chi-square method for resistant and predisposed groups showed highly 

significant results. An 83.88% achieved accuracy came from the CNN, while 49.5% of the accuracy 

resulted from the farmer. Recording recall ratio and precision of 0.766 and 0.896 occurred for 

resistant, and 0.911 and 0.796 were the recordings for susceptible classes by deep learning technique, 

respectively. The proposed approach is an influential source of detection of resistant lines against stalk 

rot disease by minimizing the need for pathologists, extension workers, or experienced farmers. It will 

help farmers to identify the quantity of fungicide against stalk rot and explore lines for resistant 

breeding programs. 
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INTRODUCTION 

 

Maize (Zea mays L.) ranks third in Pakistan 

among grain crops. Globally, an estimation 

reveals that maize farms will increase from 216 

to 227 million (5% increase) up to 2030 

(Erenstein et al., 2021). Maize has nutritional 

significance along with food sources, fuel for 

humans, and feed for animals (Price and 

Lalonde, 2023). New technologies have played 

crucial roles in meeting world food 

requirements, but plant diseases are still 

alarming to food reserves (Kunyanga et al., 

2023). Pakistan produces maize but has yet to 

reach its high-yield potential. It may be due to 

the late treatment of diseases. The quantity 

and quality of grain incur adverse influences 

from the stalk rot disease (Jim, 1999; Yang et 

al., 2002). Phenotypic and genetic variations of 

pure lines against the stalk rot provide helpful 

information for breeding programs (Qureshi et 

al., 2015a, b); however, stalk rot still has more 

drastic impacts among fungal diseases.  

 The impact of stalk rot infection on 

grain micronutrients (Fe, Mn, Zn, Ca, Mg, Cu, 

N, P, and K), macronutrients (starch, fat, and 

protein), debris, qualities like breadth, 

hardness, and unit grain weight is also evident 

(Bandara et al., 2017). Farmers with small 

land holdings are seriously troubled by plant 

diseases because their survival depends solely 

upon available healthy crops. The early-stage 

disease recognition and classification is highly 

critical in disease management. It is only 

possible by the visit of pathologists, extension 

workers, or experienced farmers, dependent on 

time that is a specialized activity, adding to the 

production cost. However, recent mobile 

advancements and computer technology have 

revolutionized the circumstances and provided 

the solution at the farmer’s doorstep. 

 Disease identification and classification 

dependent upon human judgment always leave 

errors (Azmi et al., 2023). Moreover, visually 

observing characteristics is a tedious and time-

consuming job (Petchiammal et al., 2023). The 

computer-aided techniques’ role has developed 

significant importance in agriculture due to 

their accuracy and speediness (Sekharamantry 

et al., 2023). Supervised learning uses labeled 

data to train the model (Rani et al., 2023). It is 

mainly applicable to solving identification 

problems. Many supervised-learning algorithm 

types are available, but the convolutional 

neural network (CNN) has gained immense 

prominence due to its remarkable achievement 

in the image identification fields (Bharadiya, 

2023). The key idea of a CNN is to elaborate 

the technique of self-learned characteristics. 

CNN does not involve the erosion of the plant 

from the soil compared with previous 

conventional methods. It only needs the 

images of diseased plant parts for disease 

classification, resulting in accurate and timely 

identifications.  

 Defects in potatoes, classification of 

grains based upon apparent features, sorting, 

and grading of fruits on color quality can now 

undergo scrutiny through computer-aided 

techniques to achieve high-quality results in a 

short time frame (Hasankhani and Navid, 

2012; Gomes and Leta, 2012). Sugarcane 

images’ exploration helps detect diseases 

(Upadhye et al., 2022), and the texture 

features of inertia, homogeneity, and 

correlation have played a vital role in image-

based plant disease identification (Kaur et al., 

2019). Accurate and precise application of 

pesticides to the crop has become possible due 

to early and timely detection of diseases 

(Thorat et al., 2023). The study objectives 

sought to 1) compare the findings of 

pathologists, farmers, and the CNN; 2) 

elaborate the feasibility of convolutional neural 

networks to classify stalk rot of maize; and 3) 

propose a model for the recognition of 

resistant versus susceptible stalks of maize 

against the stalk rot disease. 

 

 

MATERIALS AND METHODS 

 

Field experiment 

 

The Maize and Millet Research Institute (MMRI) 

Yousafwala, Sahiwal, was the chosen site for 

the productive study. The institution has a 

distance of 11 km from Sahiwal. It has an 

elevation of 175 m with a latitude of 31°41 N 

and a longitude of 73°12 E. The institute’s 

chief purpose is to develop and multiply high-

quality sorghum, maize, and pearl millet seeds. 
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Maize has a higher priority over other cereal 

crops due to its utilization as a food and the 

availability to grow in two seasons, i.e., Kharif 

and spring. The site temperature ranges 

between 40 °C to 50 °C in summer and 5 °C to 

10 °C in winter, with an annual average rainfall 

of about 349 mm. It is near the edge of the 

Thar Desert, resulting in the warming of the 

wet and cooling of the dry seasons. The soil is 

fertile and favors the short and scrubby 

vegetation. Sowing of seeds in the field used 

an augmented experimental design. Seeds, 

grown manually, ensued in a single-row plot, 

with a length of 10 m. Growing two seeds per 

hill had the row-to-row distance adjusted to 75 

cm and the plant-to-plant distance to 20 cm. 

Applying an average dose of fertilizers, 60-

200-100 and 60-250-125 of KNP per hectare, 

transpired during autumn and spring, 

respectively. Earthed up, normal hoeing, 

irrigation, and 2–3 foliar insecticidal treatment 

applications proceeded as per standards to 

save the crop against sucking insects and 

maize borer. The experiment included two 

parts, i.e., natural infection and artificial 

inoculation. Randomly selected plants for 

artificial inoculating came from the 

silking/tasseling stage. The degree of 

resistance or susceptibility continued to 

documentation after 28 days of vaccination. 

 

Research design 

 

The research objective was to design a neural 

network model that would help in classifying 

resistant and susceptible stalks against the 

stalk rot stress (Figure 1). Owomugisha et al. 

(2014) developed a model for disease 

classification and described the ways to 

measure the classification performance. The 

conceptual model details appear in Figure 2. 

 

Dataset 

 

Proper datasets are necessary starting from 

the training phase to the testing phase in an 

object-recognition research. Different kinds of 

approaches could be applicable for acquiring 

the images. In this study, adopting a 

nonparticipant technique served in obtaining 

the healthy and susceptible images of the stalk 

of the maize plant. The needed images came 

from a camera of an android mobile phone. 

Resistant and susceptible stalk images 

compilation continued at the Maize and Millet 

Research Institute, Yousafwala. Plant 

categories separated into two groups on visual 

examination of the stalk by the pathologist and 

served as a standard for developing the farmer 

model and CNN. Image pixel values became a 

source for training and testing of the model. 

 

Image preprocessing and labeling 

 

Images taken through the smartphone had 

different resolutions and sizes. These 

characteristics incurred uniform adjustments to 

get better pattern extraction. This 

preprocessing was also necessary to get 

consistent results from the deep neural 

network. Moreover, the image preprocessing 

procedure included cropping and marking the 

stalk to focus the area of interest. Images with 

higher resolution in the interest area became 

eligible for the dataset. Image resizing also 

happened to minimize the training time for the 

model. 

 

Sample division 

 

The process divided the datasets into training, 

validation, and test datasets. Training data 

sets were exploratory for learning the model. 

Validation datasets served to tune 

hyperparameters and also measured output 

errors. Test datasets’ utilization helped to 

check the actual performance. Finally, the 

database consisted of 600 images, achieved 

constitution, containing equal quantities of 

resistant and susceptible images. Images 

comprising 85% were usable for training the 

model, while 15% served as exercises to test 

and validate the model’s performance. 

 

Convolutional neural network 

 

The neural network contained an input, a 

hidden, and an output layer (Figure 3). The 

convolutional layer was the principal layer of a 

CNN model. The detail of layers with the 
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Figure 1. Resistant and susceptible stalks. 

 

 

 
 

Figure 2. Conceptual Design of the Proposed Model. 
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Figure 3. Architecture of neural network.  

 

 

Table 1. Summary of the CNN layers. 

Layer Size Other parameters 

Input 300x300x3  

Convolution (C1) 3x8 padding=same 

Pooling 2 stride = 2 

Convolution (C2) 3x16 padding=same 

Pooling 2 stride = 2 

Convolution (C3) 3x16 padding=same 

Pooling 2 stride = 2 

Convolution (C4) 3x32 padding=same 

Pooling 2 stride = 2 

Convolution (C5) 3x32 padding=same 

Pooling 2 stride = 2 

Convolution (C6) 3x64 padding=same 

Fully Connected + Softmax 2  

 

parameters used in the model has descriptions 

in Table 1. The algorithms work in the 

following ways: 

 

1. Input: This consists of N images 

labeled with K classification tags, named as 

training set. 

2. Learning: This step uses the training 

set to describe accurately to which each class 

belongs. This step is often the training or 

learning of the classifier level. 

3. Evaluation: The classifier served mainly 

to guess the classification labels of images it 

has not perceived before and estimate the 

quality of the classifiers. We link the classifier’s 

guessed tags with the actual ones of the 

images. 

 

Model training 

 

During this process, labeled stalk images get 

fed into the model to train it. Identified model 

neurons worked on labeled images to give a 

desirable output of the training session. The 

iterations carried out during the training 

session considered the objective of minimizing 

the error rate and adjusting the input weights. 

 

Model validation and testing 

 

Training of the model proceeded to check the 

actual model output with the desired one. 

Output errors measured during the validation 

further attain use to adjust the weight of the 

neurons for fine-tuning, that testing of the 

model could produce outcomes near to actual 

results. 
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Research quality 

 

Muthukannan and Latha (2015) defined the 

statistical measures to check the performance 

of the model of disease plants using artificial 

neural networks. Accuracy, precision, and 

recall ratio operations aided the model 

evaluation. 

 

 

RESULTS 

 

The chief method employed for disease 

classification in Pakistan depended upon visual 

inspection. The study progressed to compare 

the findings of a farmer developed with the 

CNN and elaborate on the feasibility of 

convolutional neural networks to classify 

resistant and susceptible stalks against the 

stalk rot of maize. Pathologists’ findings 

became a standard for comparing the state-of-

the-art method and CNN. Pathologists divided 

the 600 images into two classes (resistant and 

susceptible) with an equal image number. 

Afterward, selected same images’ random 

provision to the developing farmer continued 

for the accuracy comparison. The architecture 

explained in the paper delivers a more reliable 

classification of the facts employed by applying 

the neural network algorithm. Using the CNN 

empowered the model to provide more reliable 

feedback to the farmers in a shorter time 

frame. The findings of the research are the 

following: 

 

Validation of the model 

 

Model validity continued by the accuracy, 

precision, and recall ratio using the confusion 

matrix. In the validation, dividing the label 

data into two major classes ensued. The 

overall accuracy of the model was 83.88% 

(Figure 4). Recall ratio and precision at 0.766 

and 0.896 were notable for the resistant class, 

while 0.911 and 0.796 emerged for the 

susceptible, respectively (Table 2). Average 

calculated values of 0.838 and 0.846 resulted 

in recall ratio and precision, respectively. The 

computed Absolute Error for each class 

represented the error amount in the prediction 

without considering their direction. The Mean 

Absolute Error of 0.322 appears in Table 2, 

elaborating the mean as the trial sample of the 

absolute differences between estimated and 

exact values, having all sample variances with 

equal weight. The loss function during the 

training is available in Figure 5. 

 
 

Figure 4. Accuracy of the classification model. 
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Table 2. Recall ratio, Precision, and Accuracy of stalk rot severity in two classes. 

Severity levels Total 
Classification Recall 

Ratio 
Precision 

Accuracy 

(%) Correctly Incorrectly 

Resistant 90 69 21 0.766 0.896 83.88 

Susceptible 90 82 8 0.911 0.796 

Average  .838 0.846 

Mean Absolute Error 0.322 

 

 

 
 

Figure 5. Loss function of the classification model. 

 

 

Table 3. Confusion Matrix of stalk rot classes. 

Input R S 

R 69 (76.66%) 21 

S 8 82 (91.11%) 

R = Resistant, S = Susceptible 

 

Confusion matrix 

 

The confusion matrix elaborates information 

about the defined and expected classes. 

Initially, 510 images among the 600 labeled 

images were operative to train the model. The 

validation process used 180 images. The 

confusion matrix’s description resulting from 

the classification of stalk rot appears in Table 

3. The model correctly classified 69 as 

resistant and 82 as susceptible. Twenty-one 

(21) of the resistants and eight of the 

susceptibles had an incorrect classification by 

the model. 

 It was visible that the farmer correctly 

identified 42 images as resistant and 47 as 

susceptible, showing 49.44% average 

accuracy, while CNN showed 83.88% accuracy. 

The Chi-Square test also checked the 

independence or homogeneity of the 

techniques. A highly significant difference was 

evident among the methods, having a P value 

less than 0.01 (Table 4). The techniques’ 

comparison study showed that CNN results 

were more appropriate than the farmer 

findings (Figure 6). 
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Table 4. Effect of techniques in classifying resistance and susceptible stalk against stalk rot. 

Techniques 
Resistant Susceptible Chi-square Value P Value 

correct incorrect correct incorrect 

50.65 0.00001** 
Pathologist 90 0 90 0 

Farmer 42 48 47 43 

CNN 69 21 82 8 

CNN = Convolutional Neural Network, ** Highly Significant at P < 0.01. 
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Figure 6. Comparison of techniques in classifying the stalk against stalk rot. 

 

DISCUSSION 

 

The classification of the stalk rot disease 

employed the computer-aided model. The 

model’s verification for correct classifying used 

accuracy, precision, and recall ratio achieved 

through the convolutional neural network. The 

proposed architecture operated with few 

convolutional layers (6) to minimize the 

computational cost and easiness of deployment 

over mobile phones. Generally, farmers in 

Pakistan rely upon visual inspection to identify 

the diseases influencing the stalk. The ocular 

methods always left errors in the proper 

identification and severity of stalk rot disease. 

The computer-aided model offered more 

concise output than the human inspection 

method. Farmers in Pakistan also relied on 

extension workers or pathologists to assist 

them in recognizing the disease, creating 

hurdles in achieving the full potential of the 

maize crop. The availability of extension 

workers or pathologists is insufficient to attend 

to all farm areas within a time frame. Late 

visits led to the drastic impact of disease, 

resulting in a yield decline. The computation of 

images visually demands experts with more 

time. The situation requires an architecture 

development through computer-aided 

technology that reduces the need for the 

expert and provides the solution to the farmers 

in shorter periods. The use of neural networks 

by the researchers in plant disease 

identification and classification is in Table 5. 

Results collected from the structured interview 

with the extension worker and pathologists in 

Pakistan emphasized the need for an 

architecture that will later be available on a 

mobile phone for the correct stalk rot disease 

and its severity determination.  
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Table 5. Review of accuracy of plant disease identification and classification by neural network. 

Author and Title Crop Disease/pest Accuracy percentage (%) 

Moshou et al. (2004)
 Wheat Rust 99 

Abdulridha et al. (2016) Avocado Wilt 98 

Lawrence et al. (2004) Cotton Nematode 97 

Liu et al. (2009) Rice Leaf roller 95 

Mohanty et al. (2016) Different crops Diseases of different crops 99.3 

Sladojevic et al. (2016) Different crops Diseases of different crops 96.3 

Oppenheim and Shani (2017) Potato Common Scab, Black Scurf, 

Black Dot, Silver Scurf 

83 to 96 

Atole  and Park (2018) Rice Golden Apple Snail 91.23 

 

 Plant breeders and pathologists work 

out the stalk rot severity in the field conditions 

(Qureshi et al., 2015a), which is laborious and 

time-consuming. The real-time classification of 

stalk rot severity into different levels provides 

the most accurate and rapid results in this 

technological era. Typically, conventional 

machine and deep learning methods are 

operational in recognizing crop stress and 

classification (Singh et al., 2018). The 

difference between these methods is the 

feature of the procedure of the extraction 

technique. Conventional machine learning 

demands dividing the studied image and 

isolating the desired traits by hand, while 

DCNN automatically isolates image traits by 

convolutional layers (Ubbens and Stavness, 

2017; Baer et al., 2022).  

 A rapid increase in the study of abiotic 

and biotic stress identification and classification 

through CNN surfaced in recent years (Singh et 

al., 2018). Ma et al. (2018) studied four 

cucumber leaf diseases and found that DCNN 

had a higher identification accuracy than 

traditional machine learning methods. 

Veeramani et al. (2018) also reported the 

importance of deep learning methods where 

classification depended upon color, texture, 

and morphology. The computational complexity 

of the neural network showed a vital 

consideration in its design. A plain architecture 

with shallow layers was mainly functional. The 

importance of the simplest model that could be 

accessible in mobile already has an explanation 

by Ma et al. (2018). The existing study 

exhibited the pronounced impact of CNN in 

classifying maize stalk rot severity. The overall 

accuracy was 83.88% in stalk rot classification. 

These findings agree with the findings 

observed in deep learning (Ferentinos, 2018). 

How many images are necessary for the CNN 

model training to get the perfect results is yet 

to be described (Kamilaris and Prenafeta-

Boldú, 2018). The reason is that each crop 

may have many diseases related to some 

environmental factors (Barbedo, 2018). 

 Moreover, labeling all these diseases 

seems challenging (Kamilaris and Prenafeta-

Boldú, 2018). Each severity class had a 

balanced number of images in the training and 

validation. Buda et al. (2018) reported that 

imbalance classes distressed convergence and 

the model’s generalization ability. Considering 

accurate classification objectives and the 

prompt response of the model, the study ran 

to classify stalk rot disease into two levels. The 

images of the study came from the 

experimental fields at the flowering stage, 

considering all environmental factors. Barbedo 

(2018) described that it was hard to collect 

numerous images. Thus, it is necessary to 

consider the lesion area only. DeChant et al. 

(2017) reported that they handled the impact 

of dead ground vegetation, illumination 

variations, background leaves, and insects on 

their model without success. Ferentinos (2018) 

stated that his model struggled to cope with 

where the examined leaf inhabited a small and 

non-central part of the image.  

 Considering these limitations led to 

taking only images of the lesion area. 

Capturing the photos in the field and laboratory 

conditions produces different accuracy levels 

for the same CNN model. Ferentinos (2018) 

reported that the CNN model trained under the 

images of field conditions, when used for 

laboratory, decreased the accuracy level from 

99% to 68%. The recall ratio of 0.911 for 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664047/#B10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664047/#B4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664047/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664047/#B17
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susceptible in Table 2 is analogous to the 

findings of Wang et al. (2017). Liang et al. 

(2019) experimented to determine the disease 

severity. They found 91% accuracy. The 

results of this study endorsed their findings. 

Our results also align with the study of Fuentes 

et al. (2017), who described the high level of 

confusion among the classes. Significant 

differences among the techniques in Table 4 

also supported the findings of Qureshi and 

Qayyum (2014). A comparison of approaches 

in Figure 6 also showed that CNN results were 

closer to the standard than the conventional 

method. 

 

 

CONCLUSIONS 

 

Extension workers and pathologists reported 

the stalk rot severity problems faced by the 

farming communities. It resulted in low yields 

of maize crops in Pakistan compared with its 

potential, resulting in more fungicidal 

applications and environmental pollution. The 

disease incurs a wrong classification into 

severity levels due to the farmers’ lack of 

experience. Misjudgment leads to inappropriate 

actions of the farmers, subsequently increasing 

the cost of production with low yield. The 

research focused on the benefits of deep 

learning algorithms for classifying resistant and 

susceptible plants. Likewise, early identification 

and severity of the disease through advanced 

technology helps in deciding measures for its 

control with correct timing. The research 

enhanced the images’ pixel values taken by the 

farmers. The data obtained from the pixel 

values are conforming to get the minimum in 

return values. Maize used as food and feed for 

humans and animals, respectively, requires the 

urgent need to get the full potential of maize 

crops by addressing biotic stresses on time 

using computer-aided technology. 
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