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SUMMARY 

 

Wheat is a globally significant cereal crop crucial for ensuring food security. Plant breeders strive to 

enhance yield potential by developing optimized and stable genotypes. In Pakistan, an agricultural 

country facing food security challenges, annual multi-environment trials (MET)’s systematic conduct 

transpire across various research stations in Punjab province. Precise data analysis of these trials is 

paramount in strengthening the national agricultural research system. The primary objective of this 

study was to identify stable wheat genotypes by analyzing data from MET trials in 31 distinct 

environments within the Punjab province during 2020–2021. The study comprised 50 wheat 

genotypes laid out under an alpha lattice design. The collected data underwent an analysis based on 

additive main effects and multiplicative interaction (AMMI) in combination with other stability 

measures. The findings revealed that genotype G41 (HYT100-27) exhibited superior performance, 

ranking within the top five across all five stability measures. Likewise, G27 (TWS17042) and G22 

(HYT100-100) genotypes have four stability measures recommending these. Notably, G1 (HYT100-74) 

demonstrated the highest average yield across all locations and gained support from two additional 

stability measures. Therefore, G41, G27, G22, and G1 emerged as the most stable and productive 

genotypes among all those studied. Regarding the environments, MLSI proved the most desirable, 

followed by RARL. Conversely, the ARFG and ARFK resulted as the least ideal environments. 

 

Keywords: AMMI, AMMI Stability Index (ASI), wheat, genotype by environment interaction (GGE), 

biplot, stability measures, multi-environment trials 

 

Key findings: The additive main effects and multiplicative interaction (AMMI) analysis, with other 

stability analyses, helped in identifying stable genotypes from multi-environment trials conducted in 

31 different environments in the Punjab province of Pakistan. The genotypes HYT100-27, TWS17042, 

HYT100-100, and HYT100-74 exhibited high stability, gaining classification as most stable genotypes. 

Moreover, the MLSI and RARL proved the most desirable environments for wheat cultivation. 
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INTRODUCTION 

 

Pakistan's agricultural sector has major crops 

classification, such as, cereal crops, minor 

crops like fruits and vegetables, livestock, 

fishing, and forestry (Anwar et al., 2021). This 

sector is significant for the country's economic 

growth, ensuring food security, creating 

employment opportunities, and reducing 

scarcity. It contributes 19.2% of the gross 

domestic product (GDP) and employs 

approximately 38.5% of the labor force. 

Notably, important crops contribute 22.5% to 

the value addition of the agricultural sector and 

4.3% to the GDP. Other crops contribute 

11.7% to the sector's development and 2.2% 

of the GDP. However, the farming sector faces 

numerous challenges, including water scarcity, 

global warming, and droughts, as it strives to 

meet the demands of the country's large 

population. Wheat, with a world production of 

761.5 million MT, holds tremendous 

significance as one of the world's essential 

crops. A global demand projection for wheat 

will reach 858 million MT by 2050 due to the 

increasing global population (Alexandratos and 

Bruinsma, 2012).  

 Wheat (Triticum) is the major cereal 

crop of Pakistan and occupies a large area of 

land in the rabi season. Being an essential 

staple crop, its cultivation covers over 8.9 

million ha (22 million acres) in the country and 

contributes 1.8% to the GDP of the country. 

Compared with the 8.82 million ha (21.8 

million acres) cultivated last year, the area 

under cultivation during 2020–2021 increased 

by 4.2%. Notably, achieving a record-breaking 

production of 27.3 million MT of wheat 

reflected an 8.1% increase compared with the 

previous year's production of 25.3 million MT. 

However, despite these achievements, wheat 

productivity in Pakistan remains relatively low 

compared to other agricultural nations, 

exacerbating current food security challenges.  

 Relatedly, the government and 

agronomic scientists engaged in continuous 

efforts to attain self-sufficiency in wheat 

production. Breeders and researchers actively 

focus on developing new and more stable 

varieties through multi-environment trials to 

enhance wheat yield. The analysis of these 

trials places significant emphasis on genotype-

environment interactions (GEI), as they play a 

crucial role in selecting efficient and stable 

genotypes. Researchers’ long-term interest in 

developing strategies helps determine higher 

genotypes in plant performance experiments 

(Yan et al., 2000; Tembo, 2021; Ahmad et al., 

2023). The method of multilocation trials is a 

systematic approach used for increasing the 

yield stability of new varieties of crops in 

different environments (Letta et al., 2008). For 

agricultural reasons, the AMMI model was 

considered superior (Gauch et al., 2008). 

 The complications arising from 

genotype × environment (G×E) interactions 

have emerged as significant focal points for 

researchers due to the considerable and 

unpredictable variations in environmental 

conditions. Studying the G×E interactions 

enables the researchers to address several 

inquiries regarding the varietal stability across 

diverse agroecologies and provide insight into 

characterizing genotypes based on varying 

levels of productivity (Yau, 1995). The 

partitioning methods of G×E interactions into 

components assigned to each genotype would 

be useful for breeders. Several parameters are 

now available for estimating the stability of 

genotypes tested over an environmental range. 

AMMI analysis combines variance and principal 

component analysis (PCA) into a single 

assessment with additive and multiplicative 

parameters (Zobel et al., 1988; Gauch et al., 

2008).  

 Along with these important analyses, 

other stability parameters proposed by Finlay 

and Wilkinson (1963) and Eberhart and Russell 

(1966) used the regression of average 

genotype yield on an environmental index and 

deviation from the regression as a secondary 

estimate of stability to evaluate the strength of 
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genotypes across environments are also 

beneficial for breeders. The ecovalence stability 

index of Wricke and stability variance have also 

measured the contribution of each genotype to 

the genotype by environment interactions 

(Shukla, 1972). Identifying genotypes that 

exhibit consistent performance requires 

research on the interactions between genotype 

and environment and evaluation of genotype 

performances in various wheat-growing 

locations. The goal of this study is to determine 

the stable wheat genotypes in Punjab by 

analyzing multi-environment trials of wheat in 

different environments in Punjab, Pakistan. 

MATERIALS AND METHODS 

 

The study collected multi-environmental data 

from the Wheat Research Institute at the Ayub 

Agriculture Research Institute in Faisalabad. 

These data encompassed the results of multi-

environment trials conducted at 31 distinct 

locations in Punjab, as indicated in Table 1. 

These locations serve as prominent sites for 

the national wheat improvement program's 

multi-location variety testing, and they 

effectively represent various wheat 

agroecology across Pakistan. 

Table 1. Details of test environments with their code. 

No. Environments Code S.No. Environments Code 

1 PSC Khanewal PKWL 17 NARC, Islamabad NARC 

2 RRS. Bahawalnagar RBAH 18 UAF FSD UFSD 

3 Dhakkar, Pakpattan DPKT 19 ABRI ABRI 

4 Army Stud Farm, Depalpur ASFD 20 UAF Burewala UBRW 

5 Renalakhurd RNLA 21 KROR  KROR 

6 MMRI, Yousafwala (Ysfw) MMRI 22 RARI (N) RARN 

7 ARF, Sargodha ARFS 23 RARI (L) RARL 

8 SSRI, Pindi Bhattian SSRI 24 JAHANIAN JHAN 

9 Govt. SEED FARM CHILLIANWALA GFCH 25 MULTAN MLTN 

10 ARF, Gujranwala ARFG 26 Rahim Yar Khan RYKN 

11 ARF, Kot Nainan ARFK 27 Mailsi (MLSI) MLSI 

12 RRI, Kala Shah Kaku RRIK 28 Alipur (ALPR) ALPR 

13 WRI, Fsd Rainfed WFDR 29 WRI, FSD WFSD 

14 BARI Chkwl BARI 30 Kallur Kot KKOT 

15 BARS FJ BAFJ 31 Azri Bhakkar AZBK 

16 GRS Attock GRAT    

 

 The trials ran at each selected location 

using an alpha lattice design with two 

replications. Each location tested a 

comprehensive set of 50 genotypes, outlined in 

Table 2. Adhering to specific recommendations 

for each site ensured the implementation of 

standard management practices. Recording 

various agronomic parameters occurred; 

however, this study considered only yield data. 

The Alpha designs initially presented by 

Patterson and Williams (1976) had further 

improvements from John and Williams (1995) 

to be used primarily in the context of 

numerous trials in the field of agriculture. 

Analysis of variances proceeded at the 

individual location level, with the combined 

data across multiple environments, using 

different packages available in the R software, 

specifically the metan suite (Olivoto and Lúcio, 

2020). Also, a combined analysis of variance 

(ANOVA) across multiple environments 

continued. Engaging the AMMI and GGE biplots 

visualized the relationship between 

environments and genotypes. These biplots 

provided graphical representations that aided 

in understanding the interactions and patterns 

between genotypes and environmental 

conditions. The stability and the impact of 

different locations on grain protein content in 

durum wheat genotypes using AMMI analysis 

employed the method by Haile et al. (2007). 
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Table 2. Fifty wheat genotypes with codes used in the study. 

GN Genotype GN Genotype GN Genotype GN Genotype 

G1 HYT 100-74 G14 10136 G27 TWS17042 G40 V-19332 

G2 180059 G15 NR-546 G28 V-19306 G41 HYT 100-27 

G3 NR-553 G16 V-19310 G29 BF-1902 G42 TWS17060 

G4 V-18381 G17 17534 G30 17FJ10 G43 V-18485 

G5 NR-544 G18 PGMB-17-6 G31 HYT 100-76 G44 V-19324 

G6 V-19308 G19 RS-2086 G32 Saim -20 G45 18BT017 

G7 EV.18101 G20 V-19317 G33 WV-1197 G46 V-19347 

G8 V-19335 G21 HYT 100-47 G34 180003 G47 TWS1849 

G9 V-18594 G22 HYT 100-100 G35 NR-551 G48 Rustam 2020 

G10 Ani-17 G23 195715 G36 V-19325 G49 BF-1910 

G11 EV.18102 G24 IS-2123 G37 V-18352 G50 Akbar-19 

G12 17FJ16 G25 Pakistan-13 G38 HYT 100-89   

G13 BF-7786 G26 IS-3234 G39 NR-545   

 

 The AMMI approach integrates ANOVA 

for the main effects with PCA for the genotype-

environment interaction. It also has proved to 

be useful in investigating complex GEI. 

 

The statistical model: 

 

    (1)ijk i j k j ijkij
Y g e b e ge      

 
 

Where: 

 ijkY
 is the yield for 

thi  genotype, 
thj

 

environment, and 
thk  replicate, 

 


 is the overall mean, 

 ig
 is the main effect of 

thi  genotype, 

 je
 is the main effect on

thj
 environment, 

ijge
 is the effects of GE interaction,  

 
 k jb e

 is the effect of the replication k  

within the 
thj

environment, and 

ijke
are the experimental random errors which 

assumed to be independent with identical 

distribution, 

2

0,ijke N
k

 
 
   

 

 AMMI method separates the GEI into 

further components:  

 

 
1

(2)
n

v iv jv ijij
v

ge    


 
 

 

Where: 

v  denotes the eigenvalue for the PCI with  

axis, 

iva
 and jv

 are the PC scores for 
thi  genotype 

and 
thj

 environment with v  axis, 

ij
 denotes the residual that contains all 

multiplicative terms not included in the model, 

and n  is the number of PC retained by the 

AMMI model. 

 

 AMMI model mixed the additive effects 

and the multiplicative effects of a two-way data 

structure in one model. The statistical equation 

for additive main effects and multiplicative 

interaction model for replicated experiments 

(Hongyu et al., 2014) follows. 

 

 
1

(3)
n

ijk i j k j v iv jv ij ijk

v

Y g e b e     


      
 

 

 Indeed, the use of the Additive Main 

Effects and Multiplicative Interaction (AMMI) 

model and the Genotype and Genotype × 

Environment (GGE) biplot has become 

increasingly popular among researchers for the 
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selection of elite genotypes in various crops, 

including wheat, castor, and orange-fleshed 

sweet potatoes (Karuniawan et al., 2021; 

Omrani et al., 2022; Memon et al., 2023). 

 Stability statistical methods, such as, 

joint regression and deviation from regression 

models (Finlay and Wilkinson, 1963; Eberhart 

and Russell, 1966), have wide employment in 

agricultural research. Furthermore, measures 

proposed by Shukla (1972) ,Wricke,  (Lin and 

Binns, 1988) superiority index, coefficient of 

variation (CV%) by Francis and Kannenberg 

(1978), and coefficient of determination by 

Pinthus (1973) have helped to assess genotype 

behavior across different environments. These 

analytical methods enable the simultaneous 

evaluation of yield and stability components, 

aiding in identifying high-yielding and stable 

genotypes. Researchers have emphasized the 

importance of these approaches for studying 

the overall performance of genotypes across 

various environments (Hernandez et al., 1993; 

Kang, 1993; Bajpai and Prabhakaran, 2000). 

 

 

RESULTS and DISCUSSION 

 

Selection of environments 

 

Employing statistical tests assessed the 

assumptions of homogeneity of residual 

variances and normality of residuals to identify 

suitable environments for subsequent analysis 

from the total of 31 surroundings. The Bartlett 

test aids in examining the homogeneity 

assumption, while the Shapiro-Wilk test leads 

in evaluating the normality assumption. These 

performed tests ensured the appropriateness 

of the selected environments for further 

analysis in the study. The Bartlett test yielded 

a highly significant test statistic of 1151.3 and 

a p-value of less than 0.000, indicating a 

violation of the assumption of homogeneity of 

variances. Likewise, the Shapiro-Wilk normality 

test produced a test statistic of 0.9602 and a 

p-value of less than 0.000, leading to a 

violation of the normality assumption. 

Consequent use of the residual variances as a 

criterion resulted in only 14 environments 

selected (Figure 1), satisfying both the 

assumption of homogeneity of variances 

(Bartlett test statistic of 19.78, p-value = 

0.101) and the assumption of normality 

(Shapiro-Wilk test statistic of 0.9994, p-value 

= 0.961). 

 

Combined and AMMI analysis of variances 

 

The results of the AMMI analysis of variance 

using data from 50 wheat genotypes tested in 

14 selected environments are available in 

Table 3. The results indicated that genotypes, 

environment, and interaction (GEI) 

significantly affected yield, revealing that 

genotypes respond differently across the 

selected test environments. The interaction 

sum of squares further divides into eight 

significant interaction principal components 

(PC1-PC8). 

 The AMMI analysis revealed that the 

interaction between genotype and environment 

was significant, and the first eight principal 

components account for 90% of the total 

variation in GEI. In AMMI analysis, primary 

components sought to represent the 

interaction effects between genotypes and 

conditions. Principal components are a linear 

combination of the original variables 

(genotypes and environments) that capture the 

maximum variation in the data. 

 The IPCA's score was 11.8% of the 

total for GEI. The study used only the first two 

PCs to construct the GGE biplot. The first two 

PCs account for 42% of the variation. The 

genotypes sorted according to their average 

yield performance had two colors: assigning 

those above the overall mean the blue color 

and those below the average yield with the red 

color (Figure 2). It shows that 24 genotypes 

fall below the overall mean harvest, whereas 

26 genotypes have a higher average than the 

total yield average. 
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Figure 1. Residual box plots of all environments (top) and selected environments (bottom). 

 

Table 3. Combined AMMI analysis of variance of 50 wheat genotypes tested at 14 selected 

environments. 

Sources d.f. Sum of Square Mean Square F. value P (>F) Proportion Accumulated 

Environments 13 1527041714.8  117464747.29**  1897.1 <0.001 70.6 
 

Replications (ENV) 14 3711869.1  265133.50**  4.3 <0.001  
 

Blocks  (REP*ENV) 252 19010635.6  75439.03*  1.2 0.0370  
 

Genotypes 49 74794838.0  1526425.26**  24.7 <0.001 3.5 
 

Gen × Env 637 255557122.4  401188.58**  6.5 <0.001 11.8 
 

PC1 61 60126697.8  985683.57**  15.9 <0.001 23.5 23.5 

PC2 59 46960868.4  795946.92**  12.9 <0.001 18.4 41.9 

PC3 57 31003901.1  543928.09**  8.8 <0.001 12.1 54.0 

PC4 55 26493672.6  481703.14**  7.8 <0.001 10.4 64.4 

PC5 53 21954215.1  414230.47**  6.7 <0.001 8.6 73.0 

PC6 51 16491407.3  323360.93**  5.2 <0.001 6.5 79.4 

PC7 49 16063955.8  327835.83**  5.3 <0.001 6.3 85.7 

PC8 47 12441721.3  264717.47**  4.3 <0.001 4.9 90.6 

Residual (PC’s) 205 24020683.0 117174.06** 1.9 <0.001 9.3 100.0 

Error 434 26872141.1  61917.38  
    

Total 2036 2162545443.3  1062153.95  
    

*, ** significant at 0.05 and 0.01, Ns=not significant. 
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Figure 2. Genotype performance sorted from lowest to highest in respect to mean yield intervals. 

 

Stability analysis 

 

In the presence of significant genotype-by-

environment (G×E) interaction, estimating 

stability parameters is a requirement. Table 4 

presents computations of the average grain 

yield for each of the 50 genotypes with the 

corresponding stability parameters. These 

stability parameters provide insights into the 

performance and adaptability of the genotypes 

across different environments. 

 The interaction principal component 

one (IPCA-1) scores and the IPCA-2 scores in 

the AMMI model are stability indicators. The 

genotypes with a lower ASI value prove more 

stable, and those with a higher ASI are 

unstable. According to ASI, G31 was most 

stable with an ASI value of 0.557, followed by 

G41 (0.681), G1 (0.683), G39 (0.747), G37 

(0.776), G42 (0.851), G38 (0.861), G16 

(0.998), G45 (1.110), and G27 (1.128), which 

are the top stable genotypes, whereas the 

genotypes G8 (6.559), G6 (4.943), G2 

(4.794), G44 (4.433), and G43 (4.398) were 

the most unstable for grain yield (Table 4). The 

stable genotypes (G31, G41, G37, G38, G16, 

and G45) showed a mean grain yield above the 

grand mean of 4208.6. However, the most 

unstable genotypes were G43, G44, G2, G6, 

and G8, with an average yield above the 

overall average yield. 

 According to Shukla (1972) 

2

ir , 

genotypes G41, G27, G22, G46, G38, G42, 

G39, G4, G13, and G16 exhibited desirable 

characteristics in terms of stability variance. 

These genotypes demonstrated lower variance, 

indicating greater stability versus others in the 

study. Pinthus (1973) proposed that the 

greater value of 
2R indicates a more stable 

genotype. Considering 
2R , the genotypes G41, 

G27, G22, G46, G38, G42, G39, G4, G13, and 

G16 were more stable compared with other 

genotypes. Corresponding to Wricke’s E 

stability statistic reveals that the wheat 

genotypes G41, G27, G22, G46, G38, G42, 

G39, G4, G13, and G16 exhibit superior
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Table 4. Mean yield and other stability measures for 50 wheat genotypes along with their ranks. 

Gen Mean ASI 
2

iSd
 

CV (%) ib
 

2

ir  
2R  iW

 iP
 

G1 4676.2 (1) 0.68 (3) 195120.0 (38) 24.44 (10) 0.965 217052.3 (31) 0.838 (35) 5521933.4 (31) 250219.7 (2) 

G2 4288.7 (19) 4.80 (48) 286588.3 (46) 32.58 (44) 1.188 346649.0 (47) 0.849 (34) 8756667.6 (47) 612919.6 (21) 

G3 3810.7 (49) 2.66 (22) 109584.1 (18) 27.62 (27) 0.912 142909.6 (15) 0.881 (28) 3671333.8 (15) 1132120.1 (50) 

G4 4034.7 (35) 1.16 (11) 78440.9 (11) 25.88 (19) 0.917 111921.0 (8) 0.905 (18) 2897856.7 (8) 816571.5 (35) 

G5 3962.0 (43) 3.33 (34) 109640.7 (19) 31.27 (41) 1.093 143962.7 (16) 0.914 (15) 3697617.4 (16) 921146.4 (42) 

G6 4360.6 (13) 4.94 (49) 336844.1 (49) 28.28 (30) 1.002 351870.2 (48) 0.775 (47) 8886988.7 (48) 589204.2 (20) 

G7 3967.3 (42) 2.28 (19) 166729.4 (33) 25.75 (16) 0.855 213934.6 (29) 0.823 (42) 5444116.3 (29) 956871.8 (44) 

G8 4395.1 (12) 6.56 (50) 318491.2 (48) 33.78 (47) 1.265 419957.0 (49) 0.853 (33) 10586434.7 (49) 588716.5 (19) 

G9 4352.0 (15) 3.72 (38) 104537.0 (17) 33.36 (46) 1.298 237473.7 (36) 0.940 (4) 6031652.9 (36) 478017.4 (13) 

G10 4204.0 (27) 4.36 (43) 412993.8 (50) 30.94 (40) 1.044 427432.4 (50) 0.756 (49) 10773021.2 (50) 726213.7 (30) 

G11 4338.6 (17) 2.25 (18) 121102.2 (22) 32.17 (43) 1.240 214677.1 (30) 0.927 (9) 5462649.9 (30) 462971.6 (11) 

G12 3807.5 (50) 4.36 (45) 185664.4 (36) 35.41 (49) 1.173 243025.8 (37) 0.889 (23) 6170233.4 (37) 1104689.4 (49) 

G13 4082.9 (32) 3.07 (31) 77893.9 (10) 30.65 (37) 1.116 119363.3 (9) 0.934 (7) 3083616.3 (9) 700540.9 (29) 

G14 4125.2 (31) 2.96 (27) 128636.4 (25) 22.78 (7) 0.790 205546.2 (27) 0.831 (39) 5234743.0 (27) 764392.9 (32) 

G15 4312.9 (18) 4.36 (44) 227109.4 (41) 33.83 (48) 1.268 334237.2 (46) 0.887 (25) 8446869.9 (46) 627132.7 (23) 

G16 4603.5 (4) 1.00 (8) 97105.9 (16) 25.58 (15) 1.038 123124.0 (10) 0.913 (16) 3177483.1 (10) 309198.1 (5) 

G17 3977.0 (40) 1.75 (16) 133607.6 (28) 30.57 (36) 1.062 161086.1 (22) 0.896 (19) 4125017.4 (22) 920589.7 (41) 

G18 3886.6 (48) 3.23 (32) 175580.0 (34) 32.81 (45) 1.105 210170.7 (28) 0.881 (27) 5350169.0 (28) 1007323.5 (47) 

G19 3891.3 (47) 2.99 (28) 59478.2 (7) 36.03 (50) 1.265 171170.7 (23) 0.956 (1) 4376730.7 (23) 995349.6 (46) 

G20 4590.2 (5) 2.96 (26) 157607.9 (31) 30.70 (38) 1.241 250792.4 (38) 0.911 (17) 6364086.2 (38) 257782.7 (3) 

G21 4649.8 (2) 4.23 (41) 307513.9 (47) 25.80 (18) 0.978 324231.1 (45) 0.781 (46) 8197117.6 (45) 285980.7 (4) 

G22 4353.2 (14) 1.65 (14) 31618.3 (2) 22.60 (6) 0.879 76265.1 (3) 0.938 (6) 2007885.7 (3) 467646.8 (12) 

G23 3972.0 (41) 3.24 (33) 110915.8 (21) 25.19 (13) 0.860 158762.2 (21) 0.867 (30) 4067012.4 (21) 878475.7 (40) 

G24 4049.3 (34) 3.02 (29) 207088.2 (40) 27.79 (28) 0.943 231066.4 (32) 0.825 (41) 5871726.1 (32) 820461.1 (36) 

G25 4082.7 (33) 1.66 (15) 50740.9 (4) 20.90 (4) 0.744 156822.4 (20) 0.893 (20) 4018597.3 (20) 787651.5 (33) 

G26 3952.9 (44) 3.46 (37) 79693.4 (13) 20.14 (2) 0.671 236747.9 (35) 0.835 (38) 6013536.1 (35) 988835.1 (45) 

G27 3981.0 (39) 1.13 (10) 36246.1 (3) 25.79 (17) 0.918 71053.5 (2) 0.939 (5) 1877803.5 (2) 863652.2 (37) 

G28 4641.0 (3) 2.75 (23) 155939.5 (30) 24.01 (9) 0.953 180636.7 (24) 0.859 (32) 4613002.0 (24) 229524.6 (1) 

G29 4005.8 (37) 3.90 (40) 198164.1 (39) 26.76 (24) 0.892 232707.9 (33) 0.814 (44) 5912697.8 (33) 865085.6 (38) 

G30 4132.7 (29) 4.35 (42) 234532.3 (43) 27.99 (29) 0.964 255095.0 (39) 0.815 (43) 6471480.6 (39) 691236.9 (28) 

G31 4472.0 (7) 0.56 (1) 95984.2 (15) 27.11 (26) 1.072 126642.9 (12) 0.919 (11) 3265314.7 (12) 377089.4 (8) 

G32 4279.7 (21) 3.41 (35) 233395.4 (42) 31.71 (42) 1.165 285828.5 (43) 0.866 (31) 7238588.4 (43) 559128.4 (17) 

G33 4447.4 (8) 3.46 (36) 256141.6 (45) 28.81 (34) 1.082 282457.7 (41) 0.837 (37) 7154453.7 (41) 434158.7 (10) 

G34 3920.3 (46) 1.37 (13) 147104.4 (29) 25.89 (20) 0.857 194309.4 (25) 0.838 (36) 4954271.7 (25) 1017174.9 (48) 

G35 3983.8 (38) 2.79 (24) 122729.9 (23) 28.60 (33) 0.991 146080.2 (17) 0.889 (22) 3750471.1 (17) 941825.9 (43) 

G36 4217.8 (26) 2.83 (25) 70896.6 (8) 21.94 (5) 0.805 142891.3 (14) 0.888 (24) 3670875.5 (14) 652975.2 (24) 

G37 4429.5 (10) 0.78 (5) 109648.2 (20) 25.04 (12) 0.967 134761.7 (13) 0.893 (21) 3467960.7 (13) 398269.4 (9) 

G38 4220.1 (25) 0.86 (7) 51265.9 (5) 24.98 (11) 0.938 81994.2 (5) 0.930 (8) 2150884.6 (5) 573035.8 (18) 

G39 3947.7 (45) 0.75 (4) 78760.2 (12) 28.47 (31) 0.994 103758.5 (7) 0.918 (12) 2694122.4 (7) 876194.8 (39) 

G40 4413.5 (11) 3.07 (30) 132124.2 (27) 30.82 (39) 1.202 205034.3 (26) 0.917 (13) 5221965.3 (26) 358699.0 (7) 

G41 4264.7 (22) 0.68 (2) 29995.7 (1) 26.34 (21) 1.012 57000.7 (1) 0.954 (2) 1527046.0 (1) 533847.2 (15) 

G42 4127.3 (30) 0.85 (6) 74469.1 (9) 26.59 (23) 0.970 100704.7 (6) 0.917 (14) 2617899.1 (6) 690241.9 (27) 

G43 4283.4 (20) 4.40 (46) 162127.3 (32) 20.64 (3) 0.715 283130.5 (42) 0.769 (48) 7171245.4 (42) 665085.5 (25) 

G44 4446.6 (9) 4.43 (47) 185740.2 (37) 19.77 (1) 0.697 319073.2 (44) 0.738 (50) 8068376.3 (44) 535063.9 (16) 

G45 4258.2 (23) 1.11 (9) 129714.0 (26) 26.84 (25) 0.992 152783.9 (19) 0.885 (26) 3917795.4 (19) 620562.6 (22) 

G46 4478.7 (6) 1.25 (12) 51920.8 (6) 25.53 (14) 1.023 78533.0 (4) 0.940 (3) 2064493.4 (4) 356485.5 (6) 

G47 4234.0 (24) 2.48 (20) 236314.0 (44) 28.54 (32) 1.015 255491.4 (40) 0.829 (40) 6481374.4 (40) 682614.6 (26) 

G48 4148.5 (28) 2.66 (21) 123567.6 (24) 26.47 (22) 0.950 149818.7 (18) 0.880 (29) 3843783.1 (18) 744050.0 (31) 

G49 4029.3 (36) 1.81 (17) 92134.1 (14) 30.24 (35) 1.079 124258.5 (11) 0.922 (10) 3205800.1 (11) 812152.3 (34) 

G50 4340.0 (16) 3.80 (39) 181297.9 (35) 23.25 (8) 0.835 235417.1 (34) 0.805 (45) 5980320.2 (34) 522076.7 (14) 

ASI=AMMI Stability Index; iP
=Superiority Index; iW

=Wricke’s E; 

2

ir =Shukla; ib
= Regression Coefficient, 

2R = Determination coefficient, Deviation 

from regression (

2

iSd
). 

characteristics than other genotypes. It is 

pertinent to mention that the outcomes derived 

from the stability variance parameter proposed 

by Shukla align with Wricke’s E stability 

statistic, as both metrics yield an identical 

ranking for the genotypes under investigation. 

The evaluation also employed the superiority 

index (Pi) model, whereby genotypes 

exhibiting lower Pi values resulted as stable 

genotypes (Lin and Binns, 1988). 

Consequently, ranking G28, G1, G20, G21, 

G16, G46, G40, G31, G37, and G33 were in 

ascending order as the most stable genotypes. 

The comparison of different stability measures 

used to rank the best genotypes appears in 

Table 5. 
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Table 5. Ranking of top 10 wheat genotypes with respect to different stability measures. 

Ranking Mean ASI 
2

iSd
 

CV (%) 
2

ir  
2R  iW

 iP
 

1 G1 G31 G41 G44 G41 G19 G41 G28 

2 G21 G41 G22 G26 G27 G41 G27 G1 

3 G28 G1 G27 G43 G22 G46 G22 G20 

4 G16 G39 G25 G25 G46 G9 G46 G21 

5 G20 G37 G38 G36 G38 G27 G38 G16 

6 G46 G42 G46 G22 G42 G22 G42 G46 

7 G31 G38 G19 G14 G39 G13 G39 G40 

8 G33 G16 G36 G50 G4 G38 G4 G31 

9 G44 G45 G42 G28 G13 G11 G13 G37 

10 G37 G27 G13 G1 G16 G49 G16 G33 

ASI=AMMI Stability Index; iP
=Superiority Index; iW

=Wricke’s E; 
2

ir =Shukla; 
2R = Determination coefficient, Deviation 

from regression (
2

iSd
). 

 

 The regression analysis of an average 

genotype grain yield content on the 

environment index yielded regression 

coefficients bi  ranging from 0.67 to 1.30. As 

per the findings of Eberhart and Russell 

(1966), ideal genotypes would possess the 

highest performance across a broad spectrum 

of environments, exhibiting a regression 

coefficient of one and minimal deviation mean 

squares. Genotypes with bi values greater than 

one would adapt to more-favorable 

environments, whereas those with bi values 

less than one would be adaptable to less–

favorable conditions. Some of the genotypes, 

for instance, G1, G6, G16, G21, G28, G31, 

G33, G37, G38, G41, G45, G46, and G47, had 

mean grain yield above the overall mean, and 

the values of bi were close to unity, suggesting 

the genotypes performed positively to the 

testing environments. Considering the second 

highest bi and relatively small deviation mean 

square (
2

iSd
), G19 and G9 showed to be the 

most responsive and adapted to more 

favorable environments based on the mean 

grain yield. Meanwhile, using 
2

iSd
, the G41, 

G22, G27, G25, G38, G46, G19, G36, G42, and 

G13 resulted as more stable wheat genotypes. 

Based on the CV, the top 10 stable wheat 

genotypes were G44, G26, G43, G25, G36, 

G22, G14, G50, G28, and G1. 

 Based on the average grain yield, 

which is the primary parameter for genotype 

selection, the genotypes G1, G21, G28, G16, 

G20, G46, G31, G33, G44, and G37 

demonstrated the highest mean grain yield 

across environments in the order mentioned. 

Figure 3 presents multiple stability parameters 

in the form of eight bar graphs. In these 

graphs, the smaller bars indicate genotypes 

with higher stability, except for bi and R2. In 

the case of R2, the higher bars showed more 

stable genotypes and in bi, the bars nearer to 

one represented more stable genotypes. 

 

AMMI Biplot analysis on wheat grain yield 

 

AMMI analysis and G×E biplots are popular 

methods plant breeding researchers employ to 

assess the stability and adaptability of 

genotypes and to select genotypes that 

perform well across different environments. 

Several studies have used AMMI analysis and 

G×E biplots to choose stable genotypes in 

various crops, such as, cotton (Farias et al., 

2016), chickpea (Erdemci, 2018), barley 

(Kendal and Dogan, 2015; Verma et al., 2016; 

Solonechnyi et al., 2018), okra (Alake and 

Ariyo, 2012), rice (Devi et al., 2020), peanut 

(de Oliveira and de Godoy, 2006), and 

rapeseed (Sara et al., 2019). These studies 

have identified durable genotypes that perform 

well across diverse surroundings and receive 
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Figure 3. Bar graphs of various stability measures. 

 

recommendations for cultivation in specific 

regions. These are effective techniques for 

selecting sturdy genotypes for high 

productivity and stability across varied 

locations. 

 The genotypes that exhibit proximity to 

the origin (x and y coordinates), classified as 

more stable, indicated their similarity in yield 

performance across different environments 

(Figure 4A). Notably, genotypes G38, G45, and 

G41, showing relatively close to zero, 

suggested their stability and wide adaptability. 

Conversely, genotypes G8, G6, and G30 

occurred somewhat distant from the origin, 

indicating their instability and limited 

adaptability. Furthermore, the AMMI biplot 

analysis revealed that genotype G1 exhibited 

the highest average grain yield of 4676.2 and 

had an IPCA1 value fairly close to zero, 

signifying its stability and wide adaptability 

(Figure 4A). These genotypes are better suited 

to specific environments compared with other 
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Figure 4. The AMMI1 and AMMI2 biplots indicating GE interaction for 50 wheat genotypes across 14 

environments in the climate of Punjab (A and B). The biplot rendered based on grain yield × WAASB 

statistic for selection of high-yielding and stable wheat genotypes (C). The grain yield variation of 

investigated 50 wheat genotypes across 14 environments during 2021–2022 (D). 

 

genotypes. Moreover, the AMMI1 biplot 

analysis showed that five locations, i.e., MLSI, 

RARL, RNLA, KROR, AZBK, and PKWL, 

exhibited average yields higher than the 

overall average. On the other hand, the 

remaining eight environments had average 

grain yields below the overall average, with 

ARFK and ARFG being the lowest-performing 

environments. 

 The AMMI 2 biplot, depicted in Figure 

4B, shows the environmental scores. Based on 

this biplot, environments and genotypes close 

to the origin showed the lowest effects on 

genotype by environment interaction, whereas 

genotypes and surroundings with a larger 

distance from the source of the biplot showed 

the most influence in creating genotype by 

environment interaction. 

 Specifically, the environments ASFD, 

PKWL, GFCH, ARFK, KROR, MMRI, and ARFG 

display short spokes, suggesting their limited 

contribution to GEI. These environments have 

a relatively lower impact on the interaction 

between genotypes and the environment. On 

the other hand, the locations MLSI, ABRI, 

RNLA, DPKT, ARFS, RARL, and AZBK possess 

longer vectors than other environments. It 

indicates their high discriminating ability and 

significant contributions toward creating GEI. 

Overall, the AMMI 2 biplot provides insights 

into the relative importance of different 

environments in influencing GEI, with environs 
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having longer vectors playing a more 

prominent role in shaping GEI, and those with 

shorter spokes have a lesser impact. 

 The genotypes G1, G4, G16, G17, G27, 

G31, G37, G38, G39, G41, G42, G45, G46, and 

G49 exhibited wide adaptability and stability 

across all environments. These genotypes have 

close grouping in the plot, demonstrating their 

similarity in yield performance across different 

ecosystems. In contrast, genotypes G2, G6, 

G8, G9, G10, G12, G15, G21, G25, G26, G30, 

G32, G36, G43, G44, and G47 displayed 

limited adaptability. These genotypes have 

wide dispersal in the plot and demonstrate 

varying mean yields or distinct response 

patterns across environments. Figure 4D 

illustrates the variability in productivity among 

50 wheat genotypes in diverse locations. The 

MLSI environment exhibited a higher average 

yield for most genotypes, followed by RARL. 

Conversely, the environments ARFG and ARFK 

displayed lower average wheat yields for most 

genotypes. 

 

 

CONCLUSIONS 

 

The multi-environment wheat trials with 50 

genotypes using alpha lattice design occurred 

at 31 different sites in the Punjab province, 

Pakistan. In conclusion, the presented study 

has provided important information on the 

stability of wheat genotypes across multiple 

environments using AMMI analysis and stability 

parameters. The findings suggest that the 

performance of genotypes varies significantly 

across ecologies, indicating the importance of 

evaluating genotypes in several locations. The 

selection of stable genotypes employed a 

combination of eight stability measures, such 

as, the AMMI Stability Index (ASI), Superiority 

Index, Wricke’s E, Shukla, Regression 

Coefficient, Determination Coefficient, and 

Deviation from regression along with mean 

yield. The study concluded that the genotypes 

G41(HYT100-27), G27(TWS17042), 

G22(HYT100-100), and G1(HYT100-74) are 

notably the most stable genotypes, with the 

MLSI and RARL as the most desirable 

environments. These results may provide 

valuable insights for wheat breeders and 

growers in selecting stable genotypes for 

cultivation in different environments. 
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