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SUMMARY 

 
Selected agronomic traits are the conventional approach to evaluating corn plantings. However, this 
approach is only some-encompassing for planting plots; hence, needing a more precise method for the 
evaluation. Unmanned aerial vehicles (UAVs) or drones are precision technologies that provide 
detailed information regarding cropping status through image analysis to make the assessment and 
prediction process more efficient. Therefore, using agronomic traits and drones together is a 

necessary approach to take. Presented research aimed to develop a productivity prediction model 
based on selective and precision secondary characters. The experiment happened from September to 
December 2021 in Tarowang Village, Takalar Regency, South Sulawesi, Indonesia. Eight maize 
cultivars, i.e., ADV1, Pioneer 1, Pioneer 2, NK, Bisi 18, Sinhas 1, NASA 29, and ADV2, grown and 
evaluated in a randomized completely block design with three replications, served as the main factor. 

Based on the results, the weight of 1000 grains, was a recommended agronomic trait in the evaluation 

and prediction of corn planting. In addition, normalized difference vegetation index (NDVI)-UAV, as 
part of ‘Technology 4.0’, considerably showed effectiveness in predicting maize productivity. 
Meanwhile, combining two variables notably have the highest accuracy in predicting corn productivity 
compared with their independent predictions. However, the advanced research still needs optimizing 
by using more maize genotypes and locations to increase the accuracy and forecast of the model. 
 
Keywords: Agronomic traits, multivariate regression, NDVI, Technology 4.0, Zea mays 

 
Key findings: Combining a selective agronomic trait (weight of 1000 grain) and NDVI-UAV revealed 
more effectiveness in evaluating the maize genotypes. This combined strategy can enhance the 
accuracy and precision of corn yield prediction. The multiple regression formulation from combining 
the two characters was 17.0486 NDVI + 0.038 weight of 1000 grain - 20.244. Moreover, the maize 
cultivar NK-7328 proved to be the best for cultivation in Takalar Region, Indonesia. 
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INTRODUCTION 

 
Corn (Zea mays L.) is an important food crop 
after rice and wheat. Increasing corn raw 

material demand is inevitable yearly for food 
and feed industries (Amzeri, 2018). The corn 
demand is proportional to increasing 
population and improving people's purchasing 
power, so an enhancement in production is a 
dire need (Kayad et al., 2021; Wicaksana et 
al., 2022). However, in the last seven years, 

corn production has decreased to target since 
2016 in Indonesia (Directorate General of Food 
Crops, 2020). Therefore, efforts should move 
toward enhancing corn production as 
intensification innovation continues the 

attempt to resolve the gap in demand and 

production of corn. Developing superior corn 
cultivars is one of the central determining 
factors in increased corn production. 
 Developing high-yielding maize 
cultivars can be through improving the genetic 
makeup of populations with free pollination and 
hybrids (Farid et al., 2022). Generally, both 

concepts have very different genetic 
constitutions. However, both have the same 
direction by optimizing the genetic 
combinations to support yield (Fromme et al., 
2019; Farid et al., 2022). The current 
development of hybrid cultivars prioritizing 
heterosis has dominated the concept of 

optimizing the genetic base (Wicaksana et al., 
2022; Bahtiar et al., 2023). However, free-
pollinating cultivars with specific environments 
can still show their genetic potential for 
significant share and support in national corn 
production (Kutka, 2011; Wolde et al., 2018). 

Therefore, comprehensive and systematic 
genetic development of maize genotypes is in 
dire need for maize yields’ significant increase. 
Although, this concept can also succeed by 
using secondary characters in the evaluation. 
 Corn population evaluation requires 
promising and precise secondary characters. 

Mainly, the secondary characters used for 
improvement are agronomic characters related 
to grain yield in corn (Padjung et al., 2021; 

Dermail et al., 2022; Farid et al., 2022). 
However, with technological developments, 
paying attention to a precision approach in 
evaluating corn genotypes is necessary. 

Several past studies have also reported the 
effectiveness of using ‘Technology 4.0’ to 
support maize cultivation and production 
(Walter et al., 2017; Kayad et al., 2021; Al-
Naggar et al., 2022; Chaiyaphum et al., 2022). 
This utilization can support increased 

production by minimizing the gap by efficiently 
using the existing resources. Meanwhile, one of 

the 4.0 technologies to employ in evaluating 

corn plantings is Unmanned Aerial Vehicle 
(UAV) drones. 
 The development of drone-based 

evaluation is one of the efforts to increase 
accuracy in assessing complex technological 
combinations, including corn. Drones are a 
smart farming technology used in various 
processes of monitoring and predicting a crop 
with the need for fertilizing and spraying 
pesticides (Ahirwar et al., 2019; De-Castro et 

al., 2021). Furthermore, in the monitoring and 
prediction process, drone technology will 
provide detailed information regarding planting 
status through imagery (Neupane and Baysal-
Gurel, 2021), including corn (Ali et al., 2022). 

This can also facilitate the evaluation process 

on a broader scale in the farming community 
(Walter et al., 2017). Furthermore, using 
drones in agriculture will save energy and time 
supporting agricultural production (Rejeb et 
al., 2022). This advantage can be an additional 
solution in assessing corn plantings, 
particularly in predicting the planting potential 

per hectare. Therefore, the advanced research 
aimed to develop a yield prediction model 
based on drones and selective secondary 
characters in maize. 
 
 
MATERIALS AND METHODS 

 
Breeding material and procedure 
 
The research ran from September to December 
2021, in Tarowang Village, South Galesong 
District, Takalar Regency, South Sulawesi, 

Indonesia, with an altitude of 18.3 masl 
(coordinates of 5°36ʹ32.2ʺ S, 119°40ʹ31.8ʺ E). 

The experiment, laid out in a randomized 
completely block design (RCBD) with three 
replications, used the maize cultivars as the 
main factor. The eight maize cultivars 

comprised ADV1, Pioneer 1, Pioneer 2, NK-
7328, Sinhas-1, NASA-29, ADV2, and Bisi-18. 
All these cultivars had three replications to 
adjust them in 24 experimental units. 

 The research procedure started with 
tillage and making experimental unit plots. 
Each experimental unit had a plot size of 4 m x 

4 m, with a distance of 1 m between beds, and 
7 m between replications. After that, planting 
pure seeds of each cultivar received a fungicide 
(metalaxyl) application to prevent downy 
mildew. The seeds had a planting spacing of 70 
cm x 20 cm, and each planting hole consisted 

of two seeds. Then, the maintenance of maize 
plants until harvest, included replanting, 
weeding, thinning, fertilizing, heaping, and 
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watering. Stitching also followed on plants that 

do not grow, die, or were late in growth, made 
in the first/second week after the first sowing. 
Thinning proceeded in the second week after 

planting in each hole where two plants grew. 
Around the corn plants underwent the manual 
weeding in the first/second week after planting 
and periodically in the following weeks as 
required.  
 Fertilization ensued three times, 
namely, at 10 days after planting (DAP), 30 

DAP, and 45 DAP, with a dose of Nitrogen: 
Phosphate: Potassium = 200:100:50 kg ha-1. 
Fertilizers were NPK Phonska, SP-36, and Urea 
(Abduh et al., 2021). Hoarding followed after 
the second fertilization, using a hoe for raising 

the mounds and loosening the soil for better 

aeration. Watering used a water pump machine 
and a water hose, with the watering done by 
inundating the plots and wetting up to the 
bed’s height. At physiological maturity, after 
the appearance of a black coating on the back 
side of the seeds, manual harvesting took 
place. 

 
Evaluation based on the use of drones 
 
The Unmanned Aerial Vehicle (UAV) drone 
monitoring and mapping activities transpired 
using the Inspire 2 drone, equipped with 
aircraft controls that can shoot an area of 30–

40 ha in one flight. The research images taken 
employed two flights with an overlay data 
acquisition system. The said drone can also 
take pictures in offline internet mode. Flight 
planning occurred in 1200–1400 h in 
acceptable weather conditions. The UAV image 

data collection proceeded in three phases of 
plant age, namely, 35, 75, and 105 DAP. 
Image acquisition data analysis through the 
Normalized Difference Vegetation Index (NDVI) 
formula succeeded. NDVI is an index that 
describes the level of the greenness of a plant, 
and the vegetation index is a mathematical 

combination of the red band and the Near-
Infrared Radiation (NIR) band. The use of NDVI 
values further analyzed corn seed production. 

NDVI calculation used the following equation: 
 

……………………       …………(1) 
 

Where: 
M = Red 
IMD = Near Infrared 

Recorded observations and data analysis 

 
The observed data included plant height, 
leaves per plant, stem diameter, cob height, 

peeled cob weight, cob diameter, cob length, 
seed rows per cob, total chlorophyll, seed 
yield, weight 1000 grain, grain yield, and NDVI 
(Abduh et al., 2021). The data of these 
parameters underwent analysis of variance and 
heritability. Then, the study continued with a 
correlation analysis of morphological and 

physiological characters. Meanwhile, the NDVI 
character was first in the regression analysis to 
get the peak point of the observation. The 
basis for forming the regression formula used 
characters related to grain yield and NDVI. The 

method focused on predicting the potential of 

grain yield. The regression analysis includes 
linear and multiple regressions (Budiarto et al., 
2021). Also, validating the regression results 
consisted of a determined value (R2), the root 
of mean square error (RMSE), and mean 
relative error (MRE). A high value indicates a 
good formulation performance on R2 and a low 

value on RMSE and MRE. The entire validation 
formulas used were as follows:  
 

…………………………… …(2) 

………………… ……(3) 

………………………………  (4) 

 
Where: 
xi = the yield predicted 
yi = the actual yield and the means of the yield 
predicted. 
 

 
RESULTS AND DISCUSSION 
 
The analysis of variance revealed that maize 
genotypes significantly impact the growth 

characters (Table 1). In addition, the results 
also showed a low coefficient of variance. The 

coefficient value aligns with the repeatability 
value, which was above 50% for all characters 
except stem diameter (39.80). Meanwhile, the 
recorded cob height and weight of 1000 grain 
had a heritability value above 90%. The entire 
maize genotypes can be help in in-depth 
character evaluation based on these results. 
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Table 1. Analysis of variance and character heritability of maize planting evaluation. 

Traits Genotype Error CV Vg Vp Heritability 

Plant height 185.86** 23.76 2.10 54.03 77.79 69.46 
Leaves plant-1 3.24* 0.22 3.60 1.01 1.23 81.94 
Stem diameter 14.36** 4.81 10.50 3.18 8.00 39.80 
Cob height 313.96** 4.55 2.20 103.14 107.68 95.78 
Peel cob weight 9901.75** 1512.32 6.30 2796.48 4308.80 64.90 
Cob diameter 9.74** 0.43 1.50 3.10 3.54 87.72 
Cob length 2.17** 0.11 2.20 0.69 0.80 85.91 
Grain rows cob-1 2.02** 0.43 4.00 0.53 0.96 55.13 
Total chlorophyll 3257.37** 529.36 5.00 909.33 1438.70 63.21 
Seed yield 0.001** 0.000 1.00 0.00030 0.00034 88.19 
weight of 1000 grain 609.91** 18.98 1.40 196.98 215.96 91.21 
Grain yield 7.65** 0.37 6.30 2.43 2.80 86.63 

Notes: CV= Coefficient of variance, Vg = Genetic variance, Vp = Phenotypic variance. 

 

The influence of the maize genotype forms the 
basis for evaluating the character and 
technology of maize cultivation (Abduh et al., 
2021; Farid et al., 2022). The evaluation 
process was more effective, with high 

heritability for almost all the traits. According 
to Anshori et al. (2022) and Farid et al. (2022), 
repeatability and heritability are supporting 
factors for a character to be used as a selective 
character in evaluating genotypes and plant 
cultivation technology. Therefore, the findings 
of the analysis of variance and repeatability 

can serve as a true basis for the in-depth 
assessment of plantings. 
 The correlation analysis showed that 

grain yield had positively correlated with 
weight of 1000 grains (0.58) significantly 
(Table 2). However, the number of leaves (-
0.45) and stem diameter (-0.58) were 

significantly negatively correlated with grain 
yield. In addition to grain yield, the weight of 
1000 grains has a significant positive 
correlation with the grain yield (0.43). Overall, 
the correlation focuses more on the core 
character, the grain yield. Based on the 

correlation, the weight of 1000 grain was the 
only character having a significant positive 
correlation with grain yield. The same type of 
positive correlation also came out from studies 
in the same traits of maize genotypes (Aman 
et al., 2020; Rafique et al., 2020; Farid et al., 

2022). Although, several studies also showed 

contradictory findings in maize (Nemati et al., 
2009; Sumange et al., 2021). However, in 
general, the weight of 1000 grains is a 
representative indicator of seed size, quality, 
and seed vigor. The potential of this parameter 
will indirectly affect the yield potential in maize 
genotypes (Wu et al., 2018; He et al., 2020). 

Therefore, the said parameter can serve as an 
indicator for evaluating the reproductive phase 
of the maize genotypes. 

 The regression analysis using three 
different periods appears in Figure 1. Based on 
the regression analysis results, the character of 
the NDVI formula has a quadratic curve with 
the formula y = -0.0001 day 2 + 0.0191 days 

+ 0.0088 NDVI. Observation of 70 days after 
planting (HST) showed the peak point of the 
NDVI value. Generally, NDVI is one of the 
commonly used index vegetation formulations 
in evaluating a plantation based on image 
analysis through drones, satellites, and other 
digital sensors (Aryal et al., 2022; Xu et al., 

2022). This index was closely related to the 
greenness of the leaves in a planting plot 
(García-Martínez et al., 2020; Panday et al., 

2020), so the NDVI curve will decrease when 
the generative phase is quadratic. It is because 
the leaves of corn plants experience chlorosis 
when entering the seed-filling process (Song et 

al., 2016; Sadras et al., 2000). Therefore, 
NDVI testing should proceed during the peak 
vegetative phase and when the corn is 
experiencing male flower anthesis. These 
findings also agree with the past research by 
Farid et al. (2022), who observed NDVI around 

60 HST, and García-Martínez et al. (2020) 
recorded around 79 HST. This study 
recommends NDVI observations at 70 HST for 
evaluating and predicting maize grain yield. 
 Based on these assumptions, two 
essential traits, namely, weight of 1000 grains 

and NDVI, were of greater concern in 

evaluating and predicting corn grain yield. 
Although, this study did not include NDVI in 
the correlation analysis. However, according to 
Maresma et al. (2020), the NDVI indicated 
more relevant and effective in predicting maize 
grain yield. The basis was also on the far-
reaching capacity of NDVI in observing plots of 

maize planting. Therefore, NDVI and weight of 
1000 grains observations emerged as 
representatives of evaluating the maize 
planting conditions. 
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Table 2. Correlation analysis between characters in corn planting evaluation. 

Traits PH LP SD CH PCW CD CL NKRC Tot. Cl SY W1000G GY 

PH 1.00 -0.10tn 0.27tn 0.81** 0.49** 0.35* -0.55** 0.40* 0.42* -0.03tn -0.42* -0.20tn 
LP  1.00 0.53** -0.06tn 0.28tn -0.20tn -0.09tn -0.25tn -0.51** 0.34* -0.07tn -0.45* 
SD   1.00 0.40* 0.48** 0.28tn -0.07tn 0.05tn -0.26tn 0.10tn -0.36* -0.58** 
CH    1.00 0.48** 0.52** -0.41* 0.48** 0.32tn -0.19tn -0.65** -0.29tn 
PCW     1.00 0.14tn -0.15tn 0.33tn -0.16tn 0.16tn -0.17tn -0.09tn 
CD      1.00 0.20tn 0.27tn 0.31tn 0.21tn -0.46* -0.10tn 
CL       1.00 -0.25tn -0.24tn -0.11tn -0.14tn 0.02tn 
NKRC        1.00 0.32tn -0.02tn -0.02tn 0.30tn 

Tot. Cl         1.00 -0.14tn -0.21tn 0.21tn 
SY          1.00 0.43* 0.09tn 
1000GW           1.00 0.58** 
GY                       1.00 

Notes: numbers followed by signs are significantly different from table r 0.05 = 0.34 (*); r 0.01 = 0.47 (**), PH = Plant height, LP= Leaves per plant, SD = Stem diameter, CH = Cob 

height, PCW = Peel cob weight, CD = Cob diameter, CL = Cob length, NKRC = Number of kernel rows per cob, Tot.Cl = Total chlorophyll, SY = Seed yield, 1000-GW = weight of 1000 
grains, GY = Grain yield. 

 

 

 
 

Figure 1. Graph of the normalized difference vegetation index (NDVI) on the development of corn plantation. 
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Table 3. Linear and multiple regression analysis in predicting maize yield. 

Formulation R2 RMSE MRE 

29.528 NDVI - 9.7692 0.27 1.28 0.120 
0.0746 W1000G - 13.098 0.44 1.11 0.098 
17.0486 NDVI+0.038 W1000G - 20.244 0.52 1.04 0.087 

Notes: NDVI = Normalized Difference Vegetation Index, W1000G = Weight 1000 grains, R2 = the determination value, RMSE = the 

root of mean square error, MRE = mean relative error. 

 
 

Table 4. Mean yield and yield predicted from NDVI and weight of 1000 grains.   

Genotypes NDVI 
W1000G 
(g) 

Yield predicted Grain yield 
(ton ha-1) NDVI W1000G NDVI + 1000-GW 

ADV1 0.67ab 305.17b 10.01 9.67 9.82 9.50c 
Pioneer-1 0.68ab 312.03ab 10.31 10.18 10.41 11.30ab 
Pioneer-2 0.66abc 318.07a 9.72 10.63 10.44 9.38c 
NK-7328 0.69a 321.57a 10.61 10.89 11.17 12.80a 
Sinhas-1 0.61c 312.77ab 8.36 10.23 9.33 9.72bc 
NASA-29 0.63bc 284.73c 8.74 8.14 7.84 7.60d 
ADV2 0.66abc 284.90c 9.82 8.16 8.47 9.04cd 
Bisi-18 0.69a 313.60ab 10.61 10.30 10.68 8.83cd 

Notes: NDVI = Normalized Difference Vegetation Index, W1000G= Weight 1000 grains. 

 

 Evaluation and prediction of corn yield 

can also be through using regression analysis. 
Combining the analysis with the determination 
value (R2), the root of mean square error 
(RMSE) and mean relative error (MRE) was 
part of the validation (Table 3). Based on these 
results, multiple linear regressions have better 

determination values (0.52), RMSE (1.04), and 
MRE (0.087) compared with a single linear 

regression. In contrast, the NDVI character 
independently has a low determination value 
with high RMSE and MRE values compared with 
the other two formulas. In general, three 
validation formulas require usage in assessing 

the model's accuracy (Ren et al., 2023). Some 
studies only use the value of determination in 
testing model validation.  
 However, the determination value was 
still less convincing, especially for small 
samples. According to Chai and Draxler 
(2014), RMSE is a validation standard for 

analyzing various models. The RMSE concept 
will provide a variance penalty for a high 
absolute error rather than a low absolute error. 

The MRE is a validation tool used to measure 
the error rate of an estimate, a model from an 
estimator, and a small sample (Widiarti et al., 

2018). RMSE and MRE analyses have the same 
scoring concept, and where both values are 
low can achieve better accuracy of the model 
(Chai and Draxler, 2014). Therefore, using 
RMSE and MRE is necessary for strengthening 
model validation. 

 From the validation results, the weight 

of 1000 grains has better prediction accuracy 
than NDVI. It may be due to NDVI still basing 
on the RGB sensor. RGB-based sensors are the 
only approach to achieving NDVI values 
(Zhang et al., 2019; Herrmann et al., 2020). It 
contrasts with several past studies using 

cameras with multispectral sensors (García-
Martínez et al., 2020; Johnson et al., 2021). 

However, combining NDVI results with the 
weight of 1000 grains can increase the 
accuracy of predictions compared with 
forecasts based on the weight of 1000 grains 
alone. These results also align with the findings 

of Farid et al. (2022) and Djufry et al. (2022); 
hence, the NDVI approach is still relevant as a 
reinforcement of the weight of 1000 grains. 
Therefore, recommending weight of 1000 
grains and NDVI in predicting and evaluating 
maize grain yield is high. 
 Based on selected evaluation 

characters, maize cultivar NK-7328 emerged 
as the best genotype in this study (Table 4). 
Rifai et al. (2020) have also reported similar 

results that the cultivar NK-7328 has greater 
yield and stability. Therefore, highly 
recommend the said maize cultivar for use in 

the Takalar region, Indonesia. Yet, the concept 
of the presented research still needs 
improvement and confirmation with a more 
significant number of genotypes and locations. 
Another recommendation is the further conduct 
of the said study in a broader area for better 
validation and prediction concepts. 
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CONCLUSIONS 

 
Combining conventional and drone approaches 
in evaluating and predicting corn planting is 

considerably adequate. The recommended 
weight of 1000 grains is an essential yield 
component in assessing and estimating corn 
planting. NDVI-UAV, as part of Technology 4.0, 
is quite effective in predicting maize grain 
yield. The combination of NDVI-UAV and the 
1000-seed weight has the highest accuracy in 

forecasting maize grain yield compared with 
their independent predictions. The 
recommendation of maize cultivar NK-7328 for 
cultivation resulted from selected agronomy 
characters and NDVI. However, this research 

further needs optimization using more maize 

genotypes and locations. It will further improve 
the accuracy and prediction of the combined 
model. 
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