

SABRAO Journal of Breeding and Genetics 55 (2) 427-441, 2023 http://doi.org/10.54910/sabrao2023.55.2.15 http://sabraojournal.org/ pISSN 1029-7073; eISSN 2224-8978

FLORISTIC COMPOSITION OF INDIGENOUS VEGETATION OF NAMAL VALLEY, MIANWALI - PUNJAB, PAKISTAN

M. RIZWAN¹, K. AHMAD¹, Z.I. KHAN¹, I. AHMAD², and S. AKHTAR^{1*}

¹Department of Botany, University of Sargodha, Sargodha, Pakistan ²Department of Botany, Govt. Associate Science College, Faisalabad, Pakistan *Corresponding author's email: 79shahzadrana@gmail.com Email addresses of co-authors: rizwan7888@gmail.com, zafar.khan@uos.edu.pk, kafeeluaf@yahoo.com, driftikharuos@gmail.com

SUMMARY

The floristic survey of selected sites of Namal valley, Mianwali, Punjab, Pakistan began in 2016 until 2019 for documenting of wild species in the valley, which continues from the Salt Range. The research explored the unobserved vegetation of Namal valley, which has a unique biodiversity extended along its six ecological sites. Indigenous species totaled 188, distributed across discovered 152 genera and 54 families during the reporting period. The significant primary family based on species demonstration was Poaceae, having 25 genera and 39 species. Poaceae family has Asteraceae following it, having 17 genera and 18 species, and then by Fabaceae (10 genera, 15 species). The most dominating vegetation was of herbaceous type (79%). The study reported a total of 28 species of shrubs, with only 12 species of trees identified during this research from selected sites. Experimental results of five nominated plants (Grewia tenax, Pentatropis spiralis, Pulicaria edmondsonii, Ruellia nudiflora, and Tephrosia purpurea) showed that these plants differed considerably in terms of phytochemical concentration. Saponin concentration was minimal in all plants, except Ruellia nudiflora (1.7%). Tannins concentration was higher in *Tephrosia purpurea* (3.75%) and *Pulicaria edmondsonii* (3.11%) than in the other three plants. Quantitative results of free amino acids reflected that 11 amino acids were present in Grewia tenax. It was noticeable that proline was the highest amino acid (1.004 mg/ml) of the separated free amino acids, whereas isoleucine was the lowest (0.008 mg/ml) in the amino acid concentration. This checklist consists of updated systematic families and plant names that will provide a handy starting point for further ecological and bio-prospective research of the area under study.

Keywords: Checklist, salt range, Namal valley, ecological sites, families, Mianwali, Pakistan

Key Findings: This research provides information about the vegetation spectrum, respective families, habitats, and habits that with no earlier documentation. It revealed the phytochemical, mineral concentration, and amino acid information about unique plant species, thus, concluding the diverse vegetation of Namal valley.

Communicating Editor: Dr. Gwen Iris Descalsota-Empleo

Manuscript received: January 3, 2023; Accepted: March 8, 2023. © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2023

Citation: Rizwan M, Ahmad K, Khan ZI, Ahmad I, Akhtar S (2023). Floristic composition of indigenous vegetation of Namal Valley, Mianwali - Punjab, Pakistan. *SABRAO J. Breed. Genet.* 55(2): 427-441. http://doi.org/10.54910/sabrao2023.55.2.15.

INTRODUCTION

The Salt Range is an approximately 300 km long belt in Punjab, extending among the Himalayan Mountains and Indus Plains. It begins in district Jehlum in the east and ends in Kalabagh along the Indus River in the west (Aziz et al., 2021). The Salt Range name comes from the momentous salt reservoirs continually deposited at Khewra, Warcha, Mauza Bazar, Makarwal, and Kalabagh, Pakistan. The Salt Range comprises a prosperous vegetative assortment of low-lying subtropical forests, acknowledged as the geological museum of Pakistan (Ahmed et al., 2016; Majeed et al., 2021). There are multiple habitats for the expansion and growth of vegetation populations, with grasses specifically make governing expansion over a comprehensive range and demonstrating immense adaptability for plant existence underneath enormous different ecological conditions. The plant species of the Salt Range show drought and salt easiness with less rainfall. The reported average rainfall of the valley was 159.3 mm per year, and the average highest temperature was 42 °C during the last five years (Haq et al., 2015; Shah et al., 2018).

pulsating climate With its and arrangement of mountains and plains, Salt Range is amusing in biodiversity despite having terrestrial ecosystems (Aziz et al., 2020). Observing the association between ecological attributes and vegetation in these ecosystems is imperative to be aware of terrestrial ecosystems. The chief constituents of terrestrial ecosystems are plant species and abiotic features. An essential characteristic of most global ecosystems is the soil dissimilarity in allotment of minerals and diverse particle structure. The provision of these nutrients to vegetation is irregular. Soil plays a significant role in controlling vegetation development. Plants show different adaptations to adjust them to various environmental conditions. On the foundation of resemblance in organization and purpose, grouping the vegetation of an ecosystem can be in diverse life forms and leaf size groups, which specify the adjustment of flora in varied environmental circumstances. Life forms also help observe and monitor dispersed vegetation communities (Shah et al., 2020; Haq et al., 2022).

Different researchers have worked on the biodiversity of the Salt Range explicitly in Soon valley; however, no specific work occurred on the mountains of the Salt Range near Namal valley in the District of Mianwali, Pakistan, with this valley still unexplored (Ghani *et al.*, 2014; Shah and Rahim, 2017).

District Mianwali situates in the North West of the Punjab province. It characterizes the plains and mountains of the western part of the Salt Range near the Soon valley (Ghani *et al.*, 2014). District Mianwali has an area of 5,840 sq km, geographically located between 32° 10' and 33° 15' N and 71° 08' and 71° 57' E. Most of the area is the extension of the Potohar Plateau and the Salt Range (Ahmed *et al.*, 2016; Shah *et al.*, 2018).

Namal valley is about 30 km from Mianwali city in the eastern direction, situating the east boundary of districts Chakwal and Khushab. This valley is well-known for Namal Lake. Namal Dam, constructed in 1913, uses Namal Lake water for irrigation. A road passing from this valley connects Mianwali to Talagang, Chakwal, and Rawalpindi. The lake has a surface area of 5.5 km². This valley is part of the Salt Range, with an area totaling about 300 km² (Shah *et al.*, 2018).

The regular slope of the valley is from the South to the North-East side. The irrigation depends mainly on rainfall, with the whole area deprived of any river or canal. The climate of this site is arid due to scanty rainfall, which is usually low in the valley. The mean valley rainfall is nearly 159.3 mm per year. This average rainfall calculation is from the annual data for 2016–2019. In 2016, yearly rainfall was the least, i.e., 95.6 mm, while the maximum rainfall was in 2019 (Ahmed *et al.*, 2019; Arshad *et al.*, 2020).

The vegetation of Namal valley remains unobserved and unnoticed. The flora of this valley depends mainly on rainfalls, nutrient availability, and particularly suitable temperature during summer. Anthropogenic disturbances like accidental fires by the herds' men and illegal honey hunters, agricultural activities, and harvesting of medicinal plants by uprooting have markedly disturbed the natural plant vegetation in this valley (Sarwat et al., 2012; Shah et al., 2018). The presented research proceeded to explore and document the unnoticed and undetected vegetation of Namal valley. The main objectives detail the indigenous vegetation of Namal valley to show the biological spectrum and phenology of all wild plant species for proper identification and future reference.

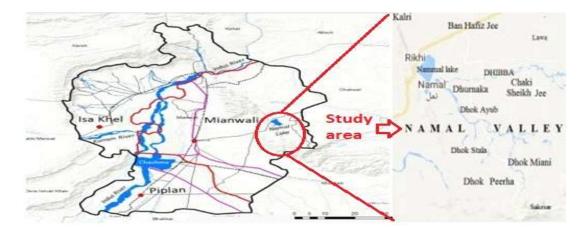


Figure 1. Map of study area of Namal valley, Mianwali, Pakistan.

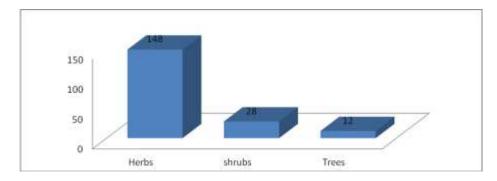


Figure 2. Summary of plant habits in Namal Valley, Mianwali, Pakistan.

MATERIAL AND METHODS

Study area

The study transpired in the Namal valley of Mianwali, Punjab, from 2016 to 2019. This valley is about 30 km from Mianwali city in the eastern direction. The climate of Namal valley is usually very hot in summer while freezing in the winter. Summer begins in May and extends to mid of September, and the day length ranges to 15 h. In June, the average least and highest temperature is 26 °C and 42 °C, respectively. Weather in December, January, and February are typically chilly and day length is nine hours. January is the coldest month each year, with the mean lowest temperature recorded at 1 °C. The mean rainfall in the valley is nearly 159.3 mm per year (Shah et al., 2018). Vegetation sampling proceeded from six ecologically diverse study sites, namely, Dhok Peera, Dhok Satala, Dhok Lataka, Dhok Garori, Namal village, and Rikhi, chosen mainly based on different topographical characteristics (Figure 1).

Vegetation structure

Taking vegetation data of plant species used the quadrat method from all ecological sites throughout 2016-2019. Plots used measured 10 m \times 10 m w for trees and shrubs and 1 m \times 1 m quadrat for herbs and grasses. Data collection from 10 to 15 random quadrats ensued every season. Only data on woody vegetation (trees and shrubs) and grasses underwent documentation in this study (Figures 2 and 3). Plant identification employed the help of available literature, especially the flora of Pakistan. After data collection further experimentation and analysis proceeded on selected five plants species (Grewia tenax, Pentatropis spiralis, Pulicaria edmondsonii, Ruellia nudiflora, and Tephrosia purpurea) based on their individuality, as these species abound only in this valley and not found in other areas of Salt Range (Figure 4).

Figure 3. Percent share of various habit forms of vegetation of Namal valley, Mianwali, Pakistan.

Grewia tenax

Pentatropis spiralis

Pulicaria edmondsonii

Ruellia nudiflora

Tephrosia purpurea

Figure 4. The five selected plant species, *Grewia tenax*, *Pentatropis spiralis*, *Pulicaria edmondsonii*, *Ruellia nudiflora*, and *Tephrosia purpurea* for the evaluation of phytochemical levels, mineral concentration, and free amino acid concentration.

Estimation of mineral contents

The elemental analysis of a powdered sample taken from the selected five plants progressed with atomic absorption spectrophotometry instrument (model AA-670 1F, Shimadzu).

Phytochemical analysis

Achieving qualitative evaluation of different phytochemicals used Mayer's reagent for alkaloids, foam test for saponins, Salkowski's test for steroids, stain test for oils, ferric chloride for phenols and tannins, and lead acetate test for flavonoids (AOAC, 1990).

Amino acid composition

Amino acids determination was according to the modified AOAC method (1990). A map already prepared using reference amino acids compared and identified separated amino acids on the chromatograms.

Statistical analysis

Statistical analysis employed the SPSS (Statistical Program for Social Sciences) version 16.0. All data underwent analysis of variance (ANOVA).

RESULTS AND DISCUSSION

The basis for selection of six ecologically diverse study sites of Namal valley, viz., Dhoke Pera, Dhoke Satala, Dhoke Lataka, Dhoke Garori, Namal, and Rikhi, primarily consisted of dissimilarities in elevation, aspect, slope, altitude, soil composition, topography, habitat, plant community, and type of vegetation life. The existing vegetation species at chosen sites were observed and enlisted.

Biodiversity is the key feature of the Salt Range, and as Namal valley continues from this range, it also contains indigenous wild medicinal plants. Differences in habitat ecology and vegetation structure are extraordinary everywhere in the Namal valley. Location-wise, all ecological sites shared a great variety in vegetation structure due to the

topographical variation in and habitat differences. Plant species totaling 188 relate to 152 genera and 54 families collected from the six sites of Namal valley (Table 1). The mainly significant family in terms of species demonstration was Poaceae, having 25 genera and 39 species. Following it was Asteraceae, with 17 genera and 18 species, and then Fabaceae (10 genera, 15 species). These results follow those of Ruocco et al. (2014) and Ahmed et al. (2019), who documented similar families in abundance in the same type of habitats.

Summary of all the reported families is documented in Table 2. Floristic composition and biological spectrum detail like local name, habitat, flowering period, and flower color are in summary (Table 3).

Plant type	Total plant species	Dhoke Pera	Dhoke Satala	Dhoke Lataka	Dhoke Garori	Namal	Rikhi
Herbs	148	121	94	109	84	97	75
Shrubs	28	25	20	23	19	23	16
Trees	12	11	7	11	4	11	7
	188	157	121	143	105	131	98

No	Family	Genera	Species	Family type	No.	Family	Genera	Species	Family
NO.	ганшу	(#)	(#)	таппу туре	NO.	ганшу	(#)	(#)	type
1	Acanthaceae	4	4	Dicot	28	Meliaceae	1	1	Dicot
2	Aizoaceae	1	1	Dicot	29	Menispermaceae	1	1	Dicot
3	Amaranthaceae	6	8	Dicot	30	Moraceae	1	2	Dicot
4	Apocynaceae	7	7	Dicot	31	Moringaceae	1	1	Dicot
5	Arecaceae	1	1	Monocot	32	Myrtaceae	1	1	Dicot
6	Asphodelaceae	2	2	Monocot	33	Nelumbonaceae	1	1	Dicot
7	Asteraceae	17	18	Dicot	34	Nitrariaceae	1	1	Dicot
8	Bignoniaceae	1	1	Dicot	35	Nyctaginaceae	1	1	Dicot
9	Boraginaceae	2	2	Dicot	36	Oleaceae	1	1	Dicot
10	Brassicaceae	6	6	Dicot	37	Oxalidaceae	1	1	Dicot
11	Cactaceae	1	1	Dicot	38	Papaveraceae	2	2	Dicot
12	Campanulaceae	1	1	Dicot	39	Plantaginaceae	4	4	Dicot
13	Cannabaceae	1	1	Dicot	40	Poaceae	25	39	Monocot
14	Capparaceae	1	2	Dicot	41	Polygonaceae	4	5	Dicot
15	Caryophyllaceae	2	2	Dicot	42	Primulaceae	1	1	Dicot
16	Chenopodiaceae	1	2	Dicot	43	Ranunculaceae	2	2	Dicot
17	Convolvulaceae	4	5	Dicot	44	Rhamnaceae	1	2	Dicot
18	Cyperaceae	2	2	Monocot	45	Rubiaceae	2	2	Dicot
19	Euphorbiaceae	4	7	Dicot	46	Salvadoraceae	1	1	Dicot
20	Fabaceae	10	15	Dicot	47	Sapindaceae	1	1	Dicot
21	Gentianaceae	1	1	Dicot	48	Solanaceae	3	5	Dicot
22	Geraniaceae	1	1	Dicot	49	Tamaricaceae	1	2	Dicot
23	Juncaceae	1	1	Monocot	50	Tiliaceae	1	1	Dicot
24	Lamiaceae	6	7	Dicot	51	Typhaceae	1	1	Monocot
25	Linaceae	1	1	Dicot	52	Verbenaceae	2	2	Dicot
26	Lythraceae	1	1	Dicot	53	Violaceae	1	1	Dicot
27	Malvaceae	2	2	Dicot	54	Zygophyllaceae	2	2	Dicot

Table 2. Summary of reported families from Namal valley, Mianwali, Pakistan.

No.	Species Name	Local Name	Family	Seed Type	Habit	Habitat	Flower Season	Flower Color
1	Achyranthes aspera	Puthkanda	Amaranthaceae	Dicot	Herb	D	Jul- Sep	Yellowish- White
2	Acrachne racemosa	Kanghi Ghass	Poaceae	Monocot	Herb	W & D	Mar-Sep	Whitish Green or Brownis
3	Aerva javanica	Bui	Amaranthaceae	Dicot	Shrub	D	Jan-May	Pale whitish
4	Ageratum conyzoides	Bhakumar	Asteraceae	Dicot	Herb	D	Oct-Dec	White, Mauve
5	Ajuga bracteosa	Weedi	Lamiaceae	Dicot	Herb	D	Mar-Aug	Blue, Purple
6	Albizia lebbeck	Kala Sharin	Fabaceae	Dicot	Tree	D	Apr-Jun	Cream
7	Albizia procera	Sufaid shrin	Fabaceae	Dicot	Tree	D	Apr-Jun	Pale White
8	Aloe barbadensis	Kawar Gandal	Asphodelaceae	Monocot	Herb	D	Jul- Sep	Yellow
9	Alternanthera pungens	Khaki booti	Amaranthaceae	Dicot	Herb	D	Jul- Sep	Straw color
10	Alternanthera sessilis	Gudrisaq	Amaranthaceae	Dicot	Herb	D	Jul- Sep	Pink, White
11	Amaranthus graecizans	Maririe	Amaranthaceae	Dicot	Herb	D	Apr- Sep	Reddish Pink
12	Amaranthus viridis	Barhu	Amaranthaceae	Dicot	Herb	D	Apr-Sep	Brown
13	Anagallis arvensis	Nili Boti	Primulaceae	Dicot	Herb	D &W	May-Sep	Blue, Pink
14	Anisomeles indica	Kutki podina	Lamiaceae	Dicot	Herb	D	May-Oct	Pink
15	Aristida adscensionis	Tela ghass	Poaceae	Monocot	Herb	D &W	Mar-Nov	Straw colour
16	Arundo donax	Narki	Poaceae	Monocot	Herb	D &W	Sep-Oct	Brown
17	Asphodelus tenuifolius	Pyazi	Asphodelaceae	Monocot	Herb	D	Jan-Mar	White
18	Azadirachta indica	Neem	Meliaceae	Dicot	Tree	D &W	May-Jun	White
19	Bacopa monnieri	Barhami Booti	Plantaginaceae	Dicot	Herb	D &W	Apr-May	Blue, Pale violet
20	Barleria cristata	Kala bansa	Acanthaceae	Dicot	Herb	D &W	Dec-Feb	Pink, White
21	Boerhavia procumbens	It sit	Nyctaginaceae	Dicot	Herb	D	Jun-Sep	Pink
22	Bothriochloa bladhii	Sitti buti	Poaceae	Monocot	Herb	D &W	May-Nov	Pinkish
23	Brachiaria distachya	Chit ghass	Poaceae	Monocot	Herb	D &W	Jul-Sep	Straw colour
24	Brachiaria ramosa	Koray	Poaceae	Monocot	Herb	D &W	Jul-Oct	Whitish
25	Brachiaria reptans	Para Ghas	Cannabaceae	Monocot	Herb	D	Jun-Nov	Whitish
26	Calligonum comosum	Khip	Polygonaceae	Dicot	Shrub	D	Mar-Apr	Silvery White
27	Calotropis procera	Akra	Apocynaceae	Dicot	Shrub	D	Apr-Sep	White Purple
28	Cannabis sativa	Bhang	Cannabaceae	Dicot	Herb	D	Jun-Aug	Off White
29	Capparis decidua	Karin	Capparaceae	Dicot	Shrub	D	Mar-Apr	Pink
30	Capparis spinosa	Kabarra	Capparaceae	Dicot	Shrub	D	May-Oct	White
31	Capsella bursa- pastoris	Ani Boti	Brassicaceae	Dicot	Herb	D	Jul-Sep	Reddish- Brown
32	Caralluma tuberculata	Chongan	Apocynaceae	Dicot	Herb	D	Aug-Oct	Yellow, Red
33	Cardamine hirsuta	Kori boti	Brassicaceae	Dicot	Herb	D	Mar-Apr	White
34	Cardaria draba	Makhi dal	Brassicaceae	Dicot	Herb	D &W	Feb-Apr	White
35	Carthamus oxyacantha	Pohli	Asteraceae	Dicot	Herb	D	Apr-Jun	Yellow
36	Cenchrus echinatus	Ludhi	Poaceae	Monocot	Herb	D	Apr-Jun	Yellow, Brown
37	Cenchrus setigerus	Dhama ghass	Poaceae	Monocot	Herb	D &W	Mar-Sep	Straw colour
38	Centaurium pulchellum	Luntak boti	Gentianaceae	Dicot	Herb	D	Mar-Oct	Purple
39	Chenopodium album	Bathu	Chenopodiaceae	Dicot	Herb	D	Jul-Oct	Green
40	Chenopodium murale	Jangli Batu	Chenopodiaceae	Dicot	Herb	D	Jul-Oct	Pale Brown

Table 3. Floristic composition, biological spectrum, and phenology of plant species recorded from Namal valley, Mianwali, Pakistan.

No.	Species Name	Local Name	Family	Seed Type	Habit	Habitat	Flower Season	Flower Color
41	Chloris barbata	Pankha ghas	Poaceae	Monocot	Herb	D &W	Mar-May	Purple
42	Chloris digitata.	Ungli ghass	Poaceae	Monocot	Herb	D &W	Nov-Dec	Greenish- Brown
43	Chloris gayana	Kagha ghass	Poaceae	Monocot	Herb	D &W	Aug-Oct	Greenish- Brown
44	Chrozophora tinctoria	Shadevi	Euphorbiaceae	Dicot	Herb	D	Apr-Jun	Yellow
45	Chrysopogon aucheri	Nela ghas	Poaceae	Monocot	Herb	D &W	Mar-Sep	Purple
46	Chrysopogon serrulatus	Lampa Ghass	Poaceae	Monocot	Herb	D &W	Apr-Sep	White, Purple
47	Cichorium intybus	Kasni	Asteraceae	Dicot	Herb	D	Agust-Sep	Blue
48	Cirsium vulgare	Laih	Asteraceae	Dicot	Herb	D	Mar-May	Purple
49	Cistanche tubulosa	Khar ghainr	Orobanchaceae	Dicot	Herb	D	Feb-Apr	Yellow
50	Citrullus colocynthis	Gharomba	Cucurbitaceae	Dicot	Herb	D	Mar-Jun	Yellow
51	Clematis grata	Charkhi	Ranunculaceae	Dicot	Shrub	D &W	Jul-Oct	Purple, White
52	Clerodendrum phlomidis	Arni	Lamiaceae	Dicot	Herb	D	Aug-Feb	Cream
53	Clitoria ternatea	Nela Matar	Fabaceae	Dicot	Herb	D &W	Aug-Nov	Blue
54	Cocculus hirsutus	Farid Buti	Menispermaceae	Dicot	shrub	D	May-Sep	Green
55	Convolvulus arvensis	Verri	Convolvulaceae	Dicot	Herb	D &W	Apr-Jul	White pink
56	Convolvulus prostratus	Lablab Bail	Convolvulaceae	Dicot	Herb	D	Apr-Sep	White
57	Conyza bonariensis	Flax grass	Asteraceae	Dicot	Herb	D &W	Apr-Sep	White
58	Conyza canadensis	Daryae Boti	Asteraceae	Dicot	Herb	D	Mar-Jun	White
59	Corchorus depressus	Boh Phali	Tiliaceae	Dicot	Herb	D	Mar-Jun	Yellow
60	Croton bonplandianum	Kala Bhangra	Euphorbiaceae	Dicot	Herb	D &W	Apr-Sep	White
61	Cucumis melo	Chibbar	Cucurbitaceae	Dicot	Herb	D	Mar-Sep	Yellow
62	Cuscuta reflexa	Aakash Bail	Convolvulaceae	Dicot	Herb	D &W	Jan-Mar	White
63	Cymbopogon jwarancusa	Rosha Grass	Poaceae	Monocot	Herb	D &W	Apr-Jul	Pale Brown
64	Cynodon dactylon	Talla	Poaceae	Monocot	Herb	D &W	Jul-Sep	Green
65	Cyperus rotundus	Koheri	Cyperaceae	Monocot	Herb	W	Mar-Jul	Brown
66	Dactyloctenium aegyptium	Pankha Khabal	Poaceae	Monocot	Herb	D &W	Apr-Jul	Brown
67	Dactyloctinium scindicum	Pankha Ghass	Poaceae	Monocot	Herb	D &W	Apr-Jul	Blue Green
68	Dalbergia sissoo	shesham	Fabaceae	Dicot	Tree	W&D	Mar-May	White
69	Datura metel	Datura	Solanaceae	Dicot	Herb	D	Apr-Sep	White
70	Desmostachya bipinnata	Dabb Ghass	Poaceae	Monocot	Herb	D &W	Apr-Sep	Straw color
71	Dichanthium annulatum	Jargu ghass	Poaceae	Monocot	Herb	D	May-Jul	Dark pink
72	Dicanthim foveolatum	sheda grass	Poaceae	Monocot	Herb	D &W	Mar-Sep	Brown
73	Dicliptera bupleuroides	Kuthhi	Acanthaceae	Dicot	Herb	D	Nov-Jun	Pink
74	Digera muricata	Leswa	Amaranthaceae	Dicot	Herb	D	Aug-Sep	Brown
75	Digitaria sanguinales	Takri ghass	Poaceae	Monocot	Herb	D &W	Jun-Sep	Brown, Yellow
76	Digtaria nodosa	Jawarani	Poaceae	Monocot	Herb	D &W	Mar-Sep	Brown, Green
77	Dinebra retroflexa	Kangar ghass	Poaceae	Monocot	Herb	D	Apr-Jul	Green, Pinkish
78	Dodonaea viscosa	Sanatha	Sapindaceae	Dicot	Shrub	D	Apr-Jul	Yellow
79	Echinochloa crus-galli	sanwak	Poaceae	Monocot	Herb	D	Jul-Sep	Green to Purple
80	Echinops echinatus	Oont Kateli	Asteraceae	Dicot	Herb	D	Nov-Jan	White

No.	Species Name	Local Name	Family	Seed Type	Habit	Habitat	Flower Season	Flower Color
31	Eclipta prostrata	Bhangra	Asteraceae	Dicot	Herb	D	Aug-Sep	White
32	Ehretia obtusifolia	Gohkru	Boraginaceae	Dicot	Shrub	D	Dec-Jan	White, Purple
33	Eichhornia crassipes	Gul e- Rana	Pontederiaceae	Monocot	Herb	W	Mar-Jul	Purple
34	Enneapogon persicus	Phumbar ghass	Poaceae	Monocot	Herb	D &W	Jun-Aug	Straw colour
85	Epilobium hirsutum	Kawo Boti	Onagraceae	Dicot	Herb	D	Jun-Sep	Pink
86	Eragrostis cilianensis	Parra Ghass	Poaceae	Monocot	Herb	D	Mar-Oct	Brown
87	Eruca sativa	Jamayon	Brassicaceae	Dicot	Herb	D	Jan-May	Yellow
88	Eucalyptus camaldulensis	Sufaida	Myrtaceae	Dicot	Tree	D	Apr-Sep	White
89	Eulaliopsis binata	Bhabhar	Poaceae	Monocot	Herb	D	Mar-Jul	Brown
90	Euphorbia helioscopia	Dhudya	Euphorbiaceae	Dicot	Herb	D	Apr-Jun	Yellow Green
91	Euphorbia hitra	Dhodhak	Euphorbiaceae	Dicot	Herb	D &W	Jul-Sep	Purple
92	Euphorbia peplus	Dhodhak	Euphorbiaceae	Dicot	Herb	D &W	Jul-Sep	Yellow Green
93	Euphorbia prostrata	Lal Dhodhak	Euphorbiaceae	Dicot	Herb	D & W	Aug-Sep	Blue Green
94	Evolvulus alsinoides	Sankhaholi	Convolvulaceae	Dicot	Herb	D	Jul-Sep	Purple
95	Fagonia indica	Dhamasa	Zygophyllaceae	Dicot	Shrub	D	May-Sep	Purple
96	Ficus benghalensis	Bohr	Moraceae	Dicot	tree	D	Apr-Oct	Yellow
97	Ficus virgata	Jangli Injeer	Moraceae	Dicot	Shrub	D	May-Nov	Violet
98	Filago hurdwarica	Bahi boti	Asteraceae	Dicot	Herb	D	May-Jun	Yellow
99	Fumaria indica	Papara	Papaveraceae	Dicot	Herb	D	Apr-May	Pale pink
100	Galium aparine	Kuri	Rubiaceae	Dicot	Herb	W	May-Jul	White
101	Geranium mascatense	Sasa Boti	Geraniaceae	Dicot	Herb	D	Apr-Aug	Purple
102	Grewia tenax	Ghungair	Malvaceae	Dicot	Shrub	D	Apr-Aug	Yellow
103	Heliotropium crispum	Hathi Sundi	Boraginaceae	Dicot	Herb	D	Apr-Jul	White
104	Imperata cylendrica	Dabba Ghass	Poaceae	Monocot	Herb	D & W	Mar-Nov	White
105	Juncus elegans	Dila	Juncaceae	Monocot	Herb	W	Apr-Jul	Straw color
106	Justicia adhatoda	Bhaikarr	Acanthaceae	Dicot	Shrub	D	Feb-Aug	Yellow
107	Kickxia ramosissima	Khunger Boti	Plantaginaceae	Dicot	Herb	D	Dec-Feb	Yellow
108	Lactuca serriola	tukhm-i-kahu	Asteraceae	Dicot	Herb	D	Jul-Sep	Yellow
100	Lantana camara	Panjphuli	Verbenaceae	Dicot	Shrub	D	Mar-Aug	Red, Pink, White
110	Lathyrus aphaca	Kasari	Fabaceae	Dicot	Herb	Ŵ	Jun-Aug	Yellow
111	Launaea capitata	Jangli ghobi	Asteraceae	Dicot	Herb	D	Mar-Aug	Yellow
112	Leptadenia pyrotechnica	Khip	Apocynaceae	Dicot	Shrub	D	Dec-Jan	Yellow
113	Leucaena leucocephala	Jumbay	Fabaceae	Dicot	Shrub	D	Apr-Aug	Tan, cream
114	Lindenbergia indica	Pili Boti	Scrophulariaceae	Dicot	Herb	D	Mar-May	Yellow
115	Linum strictum	Alsi	Linaceae	Dicot	Herb	D	Mar-May	Yellow
116	Malvastrum coromandelianum	Kharenti	Malvaceae	Dicot	Herb	D	Apr-Jul	Yellow
117	Malvastrum coromandenanum Melilotus indicus	Jangli Methi	Fabaceae	Dicot	Herb	D	Apr-Sep	Yellow
	Mentha longifolia	Jangli Podina	Lamiaceae	Dicot	Herb	D D & W	Aug-Sep	Mauve
118 119	Mentha longilolla Merremia dissecta		Convolvulaceae	Dicot	Herb	D &W D &W		White
		Bengal sage					Mar-May	
120	Minuartia hybrida	Mallow Boti	Caryophyllaceae	Dicot	Herb	D &W	May-Jun	White

No.	Species Name	Local Name	Family	Seed Type	Habit	Habitat	Flower Season	Flower Color
121	Misopates orontium	Kuta Phool	Plantaginaceae	Dicot	Herb	D & W	Feb-Apr	Pink
122	Moringa oleifera	Sohajna	Moringaceae	Dicot	Tree	D	Jan-Mar	Yellow White
123	Nerium oleander	Kanair	Apocynaceae	Dicot	Shrub	D	Apr-Jul	Yellow, Pink, Red, White
124	Ocimum americanum	Kali tulsi	Lamiaceae	Dicot	Herb	D	Aug-Sep	White
125	Ocimum basilicum	Niazbo	Lamiaceae	Dicot	Herb	D	Aug-Sep	Pink, White
126	Opuntia dillenii	Thor	Cactaceae	Dicot	Herb	D	Mar-Jun	Yellow
127	Oxalis corniculata	Khathi Boti	Oxalidaceae	Dicot	Herb	W	May-Sep	Yellow
128	Papaver dubium	Jangli Afyun	Papaveraceae	Dicot	Herb	D	Feb-Jun	Red, Purple, White
129	Parthenium hysterophorus	Dhania Boti	Asteraceae	Dicot	Herb	D	Apr-Sep	White
130	Peganum harmala	Harmal	Nitrariaceae	Dicot	Herb	D	Apr-Sep	White
131	Pennisetum Orientale	Kohlu ghass	Poaceae	Monocot	Herb	D	Apr-Nov	Brown Purple
132	Pentatropis spiralis	Aakari Bail	Asclepiadaceae	Dicot	Herb	D	Sep-Dec	pale Yellow
133	Periploca aphylla	Barara	Apocynaceae	Dicot	Shrub	D	Jul-Sep	Purple
134	Persicaria lapathifolia	Manba	Polygonaceae	Dicot	Herb	D	Jul-Sep	White
135	Persicaria maculosa	Gulabi Boti	Polygonaceae	Dicot	Herb	D	Aug-Sep	Purple
136	Phoenix sylvestris	Khajoor	Arecaceae	Monocot	tree	W & D	Aug-Sep	Purple
137	Phragmites australis	Nari	Poaceae	Monocot	Herb	D &W	Aug-Oct	White
138	Phragmites karka	Doka Ghass	Poaceae	Monocot	Herb	W	Oct-Nov	Purple
139	Phyla nodiflora	Bhukkan	Verbenaceae	Dicot	Herb	D &W	Apr-Nov	White
140	Physorrhynchus chamaerapistrum	Cheel	Brassicaceae	Dicot	Herb	D	Feb-Jun	White
141	Pluchea arabica	Rasan Boti	Asteraceae	Dicot	Herb	D	Aug-Nov	Yellow
142	Polygonum plebeium	Gulabi sag	Polygonaceae	Dicot	Herb	W	Aug-Sep	Pink
143	Portulaca oleracea	Qulfa	Portulacaceae	Dicot	Herb	D	May-Jul	Yellow
144	Prosopis cineraria	Jandi	Fabaceae	Dicot	Tree	D	Feb-May	Yellow
145	Prosopis glandulosa	Angrezi Kikar	Fabaceae	Dicot	Shrub	D	Apr-Jun	Cream
146	Prosopis juliflora	Kikri	Fabaceae	Dicot	Shrub	D	Mar-Jul	Cream
147	Pseudogaillonia hymenostephana	Bubadar	Rubiaceae	Dicot	Herb	D	Apr-Jul	Pink
148	Pulicaria edmondsonii	Ghandphool	Asteraceae	Dicot	Herb	D	Aug-Oct	Yellow
149	Punica granatum	Jangli anar	Punicaceae	Dicot	Shrub	D	Mar-May	Red
150	Pupalia lappacea	GolPuthkanda	Amaranthaceae	Dicot	Herb	D	Jul-Sep	White
151	Ranunculus hispidus	Shim	Ranunculaceae	Dicot	Herb	W	Apr-Jun	Yellow
152	Rhazya stricta '	Weirran	Apocynaceae	Dicot	Shrub	D	Apr-Sep	White
153	Ricinus communis	Harnoli	Euphorbiaceae	Dicot	Shrub	D	Jul-Sep	Yellow
154	Rosa acicularis	Jangli Ghulab	Rosaceae	Dicot	Shrub	D	Mar-Sep	Pink
155	Ruellia nudiflora	Patakhi	Acanthaceae	Dicot	Herb	D	Mar-Sep	Violet, Pink, White
156	Rumex dentatus	Jangli Palak	Polygonaceae	Dicot	Herb	Ŵ	May-Jun	White
157	Saccharum spontaneum	Kahn	Poaceae	Monocot	Herb	D	Jul-Sep	White
158	Salvadora persica	Jall	Salvadoraceae	Dicot	Shrub	D	Mar-Jul	Yellow
159	Salvia moorcroftiana	Sarda	Lamiaceae	Dicot	Herb	D & W	May-Jun	Purple
160	Schweinfurthia papilionacea	Sanni	Plantaginaceae	Dicot	Herb	W	May-Jul	White

No.	Species Name	Local Name	Family	Seed Type	Habit	Habitat	Flower Season	Flower Color
161	Senegalia modesta	Phulai	Fabaceae	Dicot	Tree	D	Mar-May	Pale White, pale yellow
162	Sisymbrium irio	Khoob Kalan	Brassicaceae	Dicot	Herb	W	Mar-Apr	Yellow
163	Solanum nigrum	Mako	Solanaceae	Dicot	Herb	D	Oct-Jan	White
164	Solanum surattense	Makora Poda	Solanaceae	Dicot	Herb	W	May-Oct	White violet
165	Sonchus asper	Dhodhak	Asteraceae	Dicot	Herb	W	May-Aug	Yellow
166	Stellaria media	Banbator	Caryophyllaceae	Dicot	Herb	D	Feb-Oct	White
167	Tamarix aphylla	Khagul	Tamaricaceae	Dicot	Tree	D	Aug-Sep	White, Pink
168	Tamarix dioica	Khaguli	Tamaricaceae	Dicot	Shrub	W	Aug-Sep	Pink, White
169	Taraxacum officinale	Duddal	Asteraceae	Dicot	Herb	W	Jan-Apr	Yellow
170	Taverniera glabra	Jethmad	Fabaceae	Dicot	Herb	D	Mar-May	Yellow
171	Taverniera spartea	Pahari Boti	Fabaceae	Dicot	Herb	D	Apr-Sep	Pink
172	Tecomella undulata	Rohera	Bignoniaceae	Dicot	Shrub	D	Dec-Feb	Yellow, orange, Red
173	Tephrosea purprea	Dalili	Fabaceae	Dicot	Herb	D	Oct-Jan	Purple
174	Tragus roxburghii	Burr grass	Poaceae	Monocot	Herb	D	May-Oct	Yellow
175	Trianthema portulacastrum	It sit	Aizoaceae	Dicot	Herb	D &W	Apr-Sep	Purple
176	Tribulus terrestris	Bhakra	Zygophyllaceae	Dicot	Herb	D	Apr-Sep	Pale Yellow
177	Tripidium bengalense	Kana	Poaceae	Monocot	Herb	D	Oct-Jan	White
178	Tripidium revennae	Sarkanda	Poaceae	Monocot	Herb	D	Aug-Nov	White
L79	Typha latifolia	Konder	Typhaceae	Monocot	Herb	W	Aug-Sep	Brown
180	Urtica dioica	Bicho boti	Urticaceae	Dicot	Herb	D &W	Jun -Oct	Yellow
181	Vachellia nilotica	Kikar	Fabaceae	Dicot	Tree	D	Mar-Sep	Yellow
182	Vernonia arabica	Kalgira	Asteraceae	Dicot	Herb	D	Apr-Sep	Purple
183	Viola cinerea	Mohri Boti	Violaceae	Dicot	Herb	D	Mar-Oct	White, purple
184	Withania coagulans	Khamjera	Solanaceae	Dicot	Herb	D	Jan-Apr	Yellow
185	Withania somnifera	Rashbhari	Solanaceae	Dicot	Herb	D	Jul-Nov	Yellow
186	Xanthium strumarium	Chota Dhatora	Asteraceae	Dicot	Herb	D	Jul-Sep	Yellow Green
187	Ziziphus mauritiana	Beri	Rhamnaceae	Dicot	Tree	D	Feb-May	White
188	Ziziphus nummularia	Karkina	Rhamnaceae	Dicot	Shrub	D	Mar-Jun	White

Dhoke Pera showed the maximum species richness, with 157 plant species reported from this site during four seasons. Different taxa were noted at the Dhoke Pera site, viz., Senegalia modesta, Dalbergia sisso, Moringa oleifera, and Phoenix sylvestris, with many large shrubs like Grewia tenax, Tecomella undulata, Ziziphus nummularia, and Ziziphus mauritiana. Many small shrubs like Aerva javanica, Alhagi maurorum, Capparis decidua, Capparis spinosa, Clematis grata, Justicia adhatoda, Nerium oleander, Periploca aphylla, Prosopis glandulosa, Rhazya stricta, and Tamarix aphylla were also habitant to this site. A similar type of result came out earlier, and researchers also reported the occurrence of the same species during a study in similar habitats (Rahman et al., 2016: Sharma et al., 2019).

The Dhoke Satala site reported 121 species during the study. Vegetation at this had high domination of shrubby site vegetation, with tall shrubs like Capparis decidua, Grewia tenax, Prosopis cineraria, Ricinus communis, Salvadora persica, Tamarix dioica, and Ziziphus mauritiana, as well as, some small shrubs like Aerva javanica, Alhagi maurorum, Calotropis procera, Capparis decidua, Capparis spinosa, Prosopis juliflora, and Rhazya stricta also dominating the site. Few trees like Vachellia nilotica, Senegalia modesta, Dalbergia sisso, and Salvadora persica were present in scattered places. These species can bear a variety of ecological pressure and spring over diverse habitat types (Gul et al., 2014; Amjad et al., 2016).

Dhoke Lataka showed the secondhighest species richness and diversity, following Dhoke Pera, with a total of 143 plant species reported from this site. Among the trees, Vachellia nilotica and Moringa oleifera showed a relationship with the highest number of species. Only Ziziphus mauritiana and Prosopis juliflora were the large shrubby vegetation that had a positive relationship with Rhazya stricta and Prosopis cineraria (Adnan et al., 2015).

At the Dhoke Garori site, recorded species richness and diversity were comparatively less than earlier-mentioned sites, with 105 species noted from this site, dominated by shrubs like Grewia tenax, Nerium oleander, and Periploca aphylla and herbaceous vegetation, such as, Tephrosia purpurea. Namal site showed a very definite type of vegetation, totaling 131 species obtained from this site. Tree vegetation flourishes in lonely patches, and merely Grewia tenax and Salvadora persica represented a quantity of association with shrubs like *Senegalia modesta* and *Tecomella undulata*. *Tephrosia purpurea*, though, is the chief governing annual herb of the site, found associated with many plant species during all four seasons. This plant species is adjustable to various habitat types and tolerant to different environmental factors (Khan *et al.*, 2017; Asif *et al.*, 2021).

Species richness and vegetation diversity were the least at Rikhi because of all the observed ecological sites. A total of 98 species emerged from this site. Consequently, the presence of additional species, may have shown a strapping positive relationship for most species at this location (Baydoun et al., 2015; Amjad et al., 2016). Multiple ecological attributes control species organization and vegetation arrangement in arid climates. The parameters affecting vegetation structure and species association in the studied area were linked to the site, such as, total elevation, aspect, and canopy cover of the quadrat, and fertility, such as, soil mineral content (Jan et al., 2016; Shah et al., 2020). The relations among land moisture content and ground vegetation increase, as intense land vegetation can influence land humidity content (Khan et al., 2021; Zhang et al., 2022). Vegetation diversity everywhere in the Namal valley was fairly extraordinary, and the structure and composition of the vegetation depended upon the climate of the area, altitude, slope, and aspect of the mountains. Elevation plays a key role in the distribution of vegetation in rocky regions (Qureshi et al., 2014; Aziz et al., 2020; Hag et al., 2022).

The results of the phytochemical analysis of five selected plants are available in Table 4. Important medicinal phytochemicals, such as, saponin, alkaloids, flavonoids, phenolic acids, and volatile oils, were present in the samples. The phytochemical analysis result shows that the five plants are rich in flavonoids. Grewia tenax and Tephrosia purpurea indicated a high concentration of flavonoids (311 mg/g and 304 ma/a, respectively), and Pulicaria edmondsonii and Ruellia nudiflora revealed a slightly high concentration of phenolic acids (228 mg/g and respectively). 239 mg/g, Saponin concentration reports to be very low in all plants except Ruellia nudiflora, which showed a concentration (1.7%).hiah Tannins concentration was higher in Tephrosia purpurea (3.75%) and Pulicaria edmondsonii (3.11%) than in the other three plants. Ruellia nudiflora showed the minimum concentration

-			-			
Plant	Saponins (%)	Tanins (%)	Alkaloids (%)	Flavonoids (mg/g)	Phenolic acids (mg/g)	Volatile oils (%)
Grewia tenax	0.6±0.19	3.75±0.51	3.54±0.32	311±0.11	200±0.38	4.11±0.15
Pentatropis spiralis	1.23 ± 0.15	1.42 ± 0.14	4.72±0.04	265±0.25	160±0.81	3.12±0.32
Pulicaria edmondsonii	0.9±0.58	3.11±0.22	2.21±0.22	185±0.33	228±0.11	5.51±0.41
Ruellia nudiflora	1.7±0.09	2.22±0.81	1.16±0.39	198±0.38	239±0.44	4.66±0.25
Tephrosia purpurea	1.3±0.11	2.95±0.11	2.31 ± 0.01	304±0.19	189±0.61	4.31±0.85

Table 4. Phytochemical evaluation in five selected plants of Namal valley, Mianwali, Pakistan.

Table 5. Mineral concentration (mg/100g) of selected plants of Namal valley, Mianwali, Pakistan.

No	Plant name	Cu	Ni	Zn	Со	Cr	Cd	Fe	Mn	Pb	Ca	Mg	К	Na
1	Grewia	0.153	0.149	0.143	0.294	0.154	0.148	0.249	0.419	0.129	191±	542±	789±	78±0
	tenax	±0.0	±0.0	±0.0	±0.0	±0.0	±0.0	±0.0	±0.1	±0.0	0.01	0.01	0.04	.04
		2	4	2	6	1	0	2	1	4				
2	Tephrosia	0.132	0.142	0.139	0.232	0.142	0.124	0.342	0.542	0.212	209±	242±	832±	63±0
	purpurea	±0.0	±0.0	±0.0	±0.0	±0.0	±0.0	±0.0	±0.3	±0.2	0.38	0.38	0.66	.66
		3	5	2	6	3	8	2	2	2				
3	Pulicaria	0.162	0.152	0.142	0.228	0.132	0.161	0.252	0.312	0.242	142±	212±	642±	72±0
	edmondso	±0.2	±0.0	±0.4	±0.6	±0.2	±0.7	±0.0	±0.0	±0.0	0.11	0.11	0.08	.08
	nii	1	3	4	3	2	3	7	1	4				
4	Pentatropi	0.146	0.160	0.156	0.170	0.160	0.135	0.260	0.360	0.160	41±0	$160 \pm$	760±	80±0
	s spiralis	±0.0	±0.4	±0.3	±0.4	±0.3	±0.7	±0.4	±0.2	±0.3	.16	0.16	0.42	.42
		1	3	2	5	3			2	2				
5	Ruellia	0.148	0.132	0.09	0.70	0.210	0.111	0.110	0.240	0.090	$111 \pm$	154±	540±	59±0
	nudiflora	±0.1	±0.4	±0.1	±0.1	±0.8	±0.5	±0.5	±0.1	±0.6	0.36	0.36	0.49	.58
		4	8	1	8	4	5	8	4	6				

of alkaloids (1.16%), with all other plants reported almost the same proportion of alkaloids. The concentration ratio of phytochemicals in these five plants is comparatively lower than what other scientists reported in similar studies on these plants (Senhaji *et al.*, 2017; Zaman *et al.*, 2021). This comparatively squat concentration could be due to the dry condition of the area and little precipitation.

The results of mineral contents appear in Table 5. Among the macro-elements determined, potassium showed higher content than calcium. Potassium content was superior in Tephrosia purpurea (832 mg/100 g), followed by Grewia tenax (789 mg/100 g) and Pentatropis spiralis (760 mg/100 g). Potassium content was lowest in Ruellia nudiflora (540 mg/100 g). The high concentration of macronutrients was from the reports of various researchers who performed similar studies on these plants in different regions (Jan et al., 2016; Senhaji et al., 2017). Copper content was maximum in Pulicaria edmondsonii (0.163 mg/100g) and lowest in Tephrosia purpurea (0.132 mg/100g). Nickle concentration varied in all plants and was high (0.160 mg/100g) in P. spiralis and least in Tephrosia purpurea (0.142 mg/100g). Zinc concentration ranged from 0.139 to 0.156mg/100g. The variation in concentration agreed with previous studies (Haq et al., 2015; Sharma et al., 2019; Xu et al., 2021). Zn emerged highest in Pentatropis

maximum concentration in *Tephrosia purpurea* (0.342 mg/100g) and minimal in *Grewia tenax* (0.252 mg/100g). *Tephrosia purpurea* also showed the highest concentration of

spiralis and lowest in *Tephrosia purpurea*. Cobalt concentration was least in *Pentatropis*

spiralis (0.170 mg/100g) and maximum in

mg/100

Pentatropis spiralis was 0.148 mg/100 g, 0.124

mg/100g,

concentration

in *Pulicaria edmondsonii* (0.132 g) and maximum in *Pentatropis*

respectively. Iron revealed a

g).

edmondsonii,

and

showed

Cadmium

Tephrosia

and

0.135

Grewia tenax (0.294 mg/100g).

concentration in Grewia tenax,

Pulicaria

0.161

Chromium

(0.160)

minimal in

mg/100

purpurea,

mg/100g,

mg/100g,

spiralis

showed the highest concentration of manganese (0.542 mg/100g). Lead concentration was leading in Pulicaria edmondsonii (0.242 mg/100g), followed by T. purpurea (0.212 mg/100g), but lowest concentration of Pb appeared in Grewia tenax mg/100g). Observed magnesium (0.129)concentration was different in all plants and was highest (542 mg/100 g) in Grewia tenax and least in Pentatropis spiralis (160 mg/100 g). Sodium concentration in Grewia tenax, Tephrosia purpurea, Pulicaria edmondsonii, and Pentatropis spiralis was 78 mg/100 g, 63 mg/100g, 72 mg/100g, and 80 mg/100g, The findings respectively. on mineral concentrations align with the previous studies (Khan et al., 2017; Asif et al., 2021).

No.	Name of Amino Acid and Amides	Grewia tenax	Pentatropis spiralis	Pulicaria edmondsonii	Ruellia nudiflora	Tephrosia purpurea
1	Isoleucine	0.076	1.006	0.471	0.008	0.895
2	Phenylalanine	0.914	0.995	1.241	0.958	0.071
3	Tyrosine	0.104	-	-	0.884	0.854
4	Proline	1.004	0.665	1.001	-	0.152
5	Alanine	0.041	-	-	0.098	0.451
6	Glutamic acid	0.051	0.251	1.076	0.854	0.685
7	Threonine	0.056	0.251	0.417	-	-
8	Arginine	0.017	0.358	0.554	0.525	0.141
9	Aspartic acid	0.141	0.441	0.995	0.362	0.085
10	Serine	0.049	0.142	-	-	0.541
11	Glycine	0.874	0.254	0.036	-	0.365

Table 6. Free amino acid concentration in selected plants of Namal valley, Mianwali, Pakistan (mg/ml).

Table 6 details the concentration of free amino acids in the samples. The results showed that 11 free amino acids occurred in different auantities in plant tissues. Quantitative results of free amino acids reflected that 11 amino acids were present in Grewia tenax. Notably, proline was the highest amino acid of the separated free amino acids in concentration (1.004)ma/ml). Inverselv, Isoleucine was the lowest amino acid concentration (0.008 mg/ml). Amino acids totaling of 11 resulted in Tephrosia purpurea. Eight types of amino acids came from Pentatropis spiralis and Pulicaria edmondsonii. A total of six free amino acids appeared in Ruellia nudiflora. Previous studies also reported similar results (Alias et al., 2015; Bose et al., 2018; Majeed et al., 2021; Waheed et al., 2022).

CONCLUSIONS

This study concludes that the ecological slope of the Namal valley, Mianwali, Pakistan, has a fundamental position in forming different plant associations of the valley. Individual plant species and associations among species show distortion with modifying edaphic, topographic, and climatic factors. Observations also revealed that selected plant species have a limited supply of different mineral and chemical concentrations due to the harsh climate and less rainfall, causing poor mineral drive in the soil. Plant researchers have agreed that plant species depict an inconsistency above a wide range of specific parameters in an ecosystem.

ACKNOWLEDGMENTS

This article is a small portion of the thesis of Muhammad Rizwan, Ph.D. Scholar, Department of Botany, University of Sargodha, Pakistan. The authors acknowledge all reviewers, as well as, those who assisted in the article completion.

REFERENCES

- Adnan M, Bibi B, Azizullah A, Andaleeb R, Mussarat S, Tariq A, Khan AL, Begum S (2015). Ethnomedicinal plants used against common digestive problems. *Afr. J. Trad. Complement. Altern. Med.* 12(5): 99-117.
- Ahmed S, Yousaf M, Ramzi A, Mothana A, Adnan J, Rehaily A (2016). Studies on wound healing activity of some euphorbia species on experimental rats. *Afr. J. Trad. Complement. Altern. Med.* 13(5): 145-152.
- Ahmed W, Qureshi R, Arshad M (2019). Floristic, frequency and vegetation biological spectra of Murree-Kotli Sattian-Kahuta National Park, Pakistan. *Pak. J. Bot.* 51: 637-648.
- Alias EEM, Zeinelabdin MH, Bashir NHH, Assad YOH, Abdelbagi OM (2015). Hypoglycemic and toxic effects of saponins from the fruit of bitter apple [*Citrullus colocynthis* (L.)] on the internal organs of Norway rat [*Rattus norvegicus* (Berkenhout)]. *Gezira J. Agric. Sci.* 13: 1-17.
- Amjad MS, Arshad M, Sadaf HM, Shahwar D, Akrim F, Arshad A (2016). Floristic compositon, biological spectrum and conservation status of vegetation in Nikyal valley, Azad Jammu and Kashmir. *Asian. Pac. J. Trop. Dis.* 6(1): 63-69.
- AOAC (1990). Official methods of analysis of the AOAC, 15th Ed. Methods 932.06, 925.09, 985.29, 923.03. Association of Official Analytical Chemists. Arlington, VA, USA.

- Arshad F, Waheed M, Iqbal M, Fatima K (2020). Ethnobotanical assessment of woody flora of district Kasur (Punjab), Pakistan. Ethnobot. Res. Appl. 20(1): 1-13.
- Asif M, Haq SM, Yaqoob U, Hassan M, Jan HA (2021). A preliminary study on the ethno-traditional medicinal plant usage in tehsil "Karnah" of District Kupwara (Jammu and Kashmir) India. *Ethnobot. Res. Appl.* 21(1): 1-14.
- Aziz MA, Abbasi AM, Ullah Z, Pieroni A (2020). Shared but threatened: The heritage of wild food plant gathering among different linguistic and religious groups in the Ishkoman and Yasin Valleys, North Pakistan. *Foods* 9: 601.
- Aziz MA, Ullah Z, Al-Fatimi M, Chiara M, Sõukand R, Pieroni A (2021). On the trail of an ancient middle-eastern ethnobotany: Traditional wild food plants gathered by Ormuri speakers in Kaniguram, NW Pakistan. *Biology* 10: 302.
- Baydoun S, Chalak L, Dalleh H, Arnold N (2015). Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. *J. Ethnopharmacol.* 173: 139-156.
- Bose S, Sarkar D, Bose A, Subhash S, Mandal C (2018). Natural flavonoids and its pharmaceutical importance. *The Pharma*. *Review*. 2(1): 61-75.
- Ghani A, Saeed S, Ali Z, Ahmad I, Ishtiaq M (2014). Ethnomedicinal survey of plants of Soon Valley, Khushab District, Punjab, Pakistan, J. Med. Plant Rec. 8(32): 1031-1034.
- Gul I, Khan RU, Mehmood S, Khan SU, Shahzeb S, Sherwani SK, Mussarat S, Khan MU (2014). Vegetation structure, classification and distribution patterns of Latamber and its outskirts, District Karak, Pakistan. Int. J. Sci. Eng. Comp. Tech. 4(1-2): 1-6.
- Haq F, Ahmad H, Iqbal Z (2015). Vegetation description and phytoclimatic gradients of subtropical forests of Nandiar Khuwar catchment District Battagram. *Pak. J. Bot.* 47(4): 1399-1405.
- Haq SM, Amjad MS, Waheed M, Bussmann RW, Pro´cków J (2022). The floristic quality assessment index as ecological health indicator for forest vegetation: A case study from Zabarwan Mountain Range, Himalayas. *Ecol. Ind.* 145: 109-115.
- Haq SM, Yaqoob U, Majeed M, Amjad MS, Hassan M, Ahmad R, Waheed M, Bussmann RW, Calixto E (2022). Quantitative ethnoveterinary study on plant resource utilization by indigenous communities in high-altitude regions. *Front. Vet. Sci.* 9: 944-946.
- Jan R, Khan RU, Rehman HU, Khan AZ, Waheed M, Khan IU, Shah NA, Khan RU, Asif S, Khan J (2016). Ethnobotanically important flora of Tehsil Tangi, District Charsadda, Pakistan. J. Chem. Pharm. Res. 8: 108-116.
- Khan MN, Hadi F, Razaq A, Shah SM (2017). Utilitarian aspects of weeds and their ecological characteristics in Ochawala valley,

District Charsadda, Pakistan. J. Agric. Bio. Sci. 12: 182-189.

- Khan S, Hussain W, Shah S, Hussain H, Altyar AE, Ashour ML, Pieroni A (2021). Overcoming tribal boundaries: The biocultural heritage of foraging and cooking wild vegetables among four Pathan groups in the Gadoon Valley, NW Pakistan. *Biology* 10(1): 537.
- Majeed M, Bhatti KH, Pieroni A, Sõukand R, Bussmann RW, Khan AM, Chaudhari SK, Aziz MA, Amjad MS (2021). Gathered wild food plants among diverse religious groups in Jhelum District, Punjab, Pakistan. *Foods.* 10: 590-594.
- Qureshi H, Arshad M, Bibi Y (2014). Invasive flora of Pakistan: A critical analysis. *Int. J. Biosci.* 4(1): 407-424.
- Rahman A, Khan SM, Hussain A, Rahman IU, Iqbal Z, Ijaz F (2016). Ecological assessment of plant communities and associated edaphic and topographic variables of the Peochar Valley District Swat of the Hindu Kush Mountains. *Moun. Res. Dev.* 36: 332-341.
- Ruocco M, Bertoni D, Sarti G, Ciccarelli D (2014). Mediterranean coastal dune systems: Which abiotic factors have the most influence on plant communities? *Estuar. Coastal Shelf Sci.* 149: 213-222.
- Sarwat A, Shinwari ZK, Ahmad N (2012). Screening of potential medicinal plants from District Swat specific for controlling women diseases. *Pak. J. Bot.* 44(4): 1193-1198.
- Senhaji B, Chebli B, Mayad E, Hamdouch A, Heimeur N, Chahid A, Ferji Z (2017). Phytochemical screening, quantitative analysis, and antioxidant activity of *Asteriscus imbricatus* and *Pulicaria mauritanica* organic extracts. *Int. Food Res. J.* 24(6): 2482-2489.
- Shah A, Rahim S (2017). Ethnomedicinal uses of plants for the treatment of malaria in Soon Valley, Khushab, Pakistan. J. Ethnopharmacol. 200(1): 84-106.
- Shah A, Sarvat R, Shoaib S, Ayodele A, Nadeem M, Qureshi T, Ishtiaq M, Abbas A (2018). An ethnobotanical survey of medicinal plants used for the treatment of snakebite and scorpion sting among the people of Namal valley, Mianwali District, Punjab, Pakistan. Appl. Ecol. Env. Res. 16(1):111-143.
- Shah AA, Shah A, Nadeem M, Rahim S (2020). Evaluation of nutritional potential of wild edible fruits consumed by indigenous communities of Central Punjab, Pakistan. *Pak. J. Bot.* 52: 1715-1725.
- Sharma N, Behera M, Das A, Panda R (2019). Plant richness pattern in an elevation gradient in the Eastern Himalaya. *Biodivers. Conserv.* 10: 1007-1028.
- Waheed M, Arshad F, Majeed M, Fatima S, Mukhtar N, Aziz R, Mangrio WM, Almohamad H, Al Dughairi AA, Al-Mutiry M (2022). Community structure and distribution pattern of woody vegetation in response to soil properties in Semi-Arid Lowland District Kasur Punjab, Pakistan. Land. 11(1): 21-45.

- Xu L, Wang YZ, Ji YY, Li P, Cao W, Wu SB, Kennelly EJ, Long CL (2021). Nutraceutical study on *Maianthemum atropurpureum*, a wild medicinal food plant in Northwest Yunnan, China. *Front. Pharmacol.* 12(1): 71-87.
- Zaman S, Farrukh H, Mohammad S (2021). Macromineral status at three phenological stages of some range shrubs of Gadoon hills,

District Swabi, Khyber Pakhtunkhwa, Pakistan. *Pak. J. Bot.* 44:711-716.

Zhang MS, Li HT, Wang JQ, Tang MH, Zhang XB, Yang SH, Liu JQ, Li Y, Huang XL, Li ZY, Huang LQ (2022). Market survey on the traditional medicine of the Lijiang area in Yunnan Province, China. J. Ethnobiol. Ethnomed. 18(1): 40.