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SUMMARY 

 
The progressive study determined the gliadin 'profile' and genetic diversity based on allelic variations 
of gliadin-coding loci in spring soft wheat (Triticum aestivum L.) selection from Russian and Kazakh 
origins. A total of 139 samples obtained from a spring soft wheat collection consisting of 62 from 
Russia and 77 from Kazakhstan were studied. As a result of electrophoretic analysis in Russian wheat, 
the share of monomorphic gliadin cultivars was 63% and polymorphic was 37%. However, in the 

Kazakh wheat collection, the share of polymorphic gliadin cultivars was 26%. The alleles were mostly 
found among the Russian cultivars, i.e., Gli-А1f (46.9%), Gli-В1е (43.7%), Gli-В1b (30.8%), Gli-D1а 
(61.0%), Gli-А2l (17.0%), Gli-А2m (16.9%), Gli-В2o (16.1%), and Gli-D2q (19.8%). In wheat 
genotypes collected from Kazakhstan, the following alleles dominated, i.e., Gli-А1f (47.4%), Gli-В1е 
(72.0%), Gli-D1а (61.7%), Gli-А2l (25.3%), Gli-А2s (16.2%), Gli-В2r (25.7%), and Gli-D2a (40.3%). 
The study compiled the so-called 'ideal' electrophoretic spectrum of gliadin for several countries to 
visualize the 'portrait' of wheat, created based on common blocks of gliadin identified by the 

researchers at different times. It assumed that cultivars close to the 'ideal' spectrum in gliadin alleles 
should have a complex of economically valuable features. For example, the spectrum of Russian wheat 
consists of the blocks of components controlled by alleles, i.e., f, e, a, q, o, e. As for the Kazakh 
wheat, its 'ideal' spectrum (f, e, a, l, r, a) coincides with the spectrum of Russian wheat at the loci 
Gli-1, as Russian cultivars were often taken as parental genotypes by the Kazakhstan breeders. 
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INTRODUCTION 
 
For decades, scientists authenticated that 
wheat seed storage protein (gliadin) can be 

used to distinguish cultivars from one another 
(Autran et al., 1979; Metakovsky, 1991; Watry 
et al., 2020). Differences in gliadin spectra are 
associated with the allelic diversity localized in
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the chief loci, i.e., Gli-A1, Gli-B1, Gli-D1, Gli-

A2, Gli-B2, and Gli-D2. The alleles at one locus 
control the synthesis of several components of 
gliadin, which are genetically linked in a 

composite form. Similarly, gliadin blocks may 
differ in intensity, electrophoretic mobility, and 
molecular weight of the components (Sozinov 
and Poperelya, 1980: Obukhova and Shumny, 
2016). The use of buffer mixtures containing 
lactic (Bushuk and Zillman, 1978, Metakovsky 
et al., 1984: Branlard et al., 1990; Utebayev et 

al., 2019; Watry et al., 2020), formic (Kozub 
et al., 2009), and acetic (Clements, 1988; 
Konarev et al., 2005) acids determines the 
total gliadin by electrophoresis on a 
polyacrylamide gel.  

Based on the study of the world wheat 

collection, allelic blocks of gliadin are identified 
and collected in catalogs for bread wheat 
(Metakovsky, 1991; Metakovsky et al., 2018) 
and durum wheat (Melnikova et al., 2012). 
Several studies also confirmed wheat cultivars 
created in certain climatic conditions could 
have similarities to each other for some alleles 

of gliadin-coding loci (Aguiriano et al., 2008; 
Salavati et al., 2008; Novoselskaya-Dragovich 
et al., 2011; Hailegiorgis et al., 2017; 
Utebayev et al., 2019), although no distinct 
allele selections were fulfilled. The reason could 
probably be due to the linkage of these alleles 
to some genes that influence the crucial traits 

in wheat (Xynias et al., 2006). Therefore, the 
common alleles of gliadin in specific climatic 
conditions can serve to identify other cultivars 
and as markers of valuable features of the 
breeding programs. 

Currently, various DNA markers are 

widely used to identify the genotypic status of 
various crop plants (Shavrukov, 2016; 
Scheben et al., 2017). The use of DNA markers 
made it possible to study the genes that 
control protein accumulation, gluten strength, 
and 1000 grains mass (Burridge et al., 2018), 
hardness (Zhang et al., 2018), the yield of 

flour during wheat grinding (Nirmal et al., 
2016), and quality of bread (Nirmal et al., 
2017). The newest technique was genome 

editing with the CRISPR/Cas9 system (Knott 
and Doudna, 2018), which helps create low-
gluten wheat lines (Sánchez-León et al., 
2018), required for the nutrition of people with 

an allergic reaction—gluten enteropathy caused 
by certain fractions of gliadin (Palosuo et al., 
2001; Pastorello et al., 2007). 

Development and application of 
modern Omics- and DNA technologies (Goel et 
al., 2020; Faryad et al., 2021), used for the 

improvement of crop plants, made it possible 
to propose the so-called strategy '5Gs for crop 

genetic improvement', which include five 

areas, i.e., 1G - genome, 2G – germplasm or 
‗2G-hermaplasma‘, 3G - genes, 4G - genomic 
selection, and 5G - gene editing (Varshney et 

al., 2020). Relatedly, to implement the 
direction of 2G-hermaplasma, it is necessary to 
use effective tools to study a large genetic 
array of crops. The use of modern molecular 
methods successfully solved the problems of 
identification and localization of certain genes 
and foreign translocations in the wheat 

collection (Tiwari et al., 2014). The genotyping 
technique with SNP high-density markers has 
shown its effectiveness in identifying wheat 
cultivars (Shavrukov, 2016). The general trend 
toward plant research is probably an artificial 

creation of reference genomic variations of 

crops at the genus level (Alonge et al., 2020; 
Liu et al., 2020; Song et al., 2020). However, 
with all the advantages of using DNA markers, 
several significant drawbacks also ensued, i.e., 
the high cost of equipment, consumables, and 
the creation of specific conditions, which limits 
the conduction of such research at this level. 

Hence, using substances of protein 
origin, such as, enzymes and reserve proteins 
as genetic markers to implement the ―2G-
hermaplasma‖ process can serve as an 
effective alternative (Shewry and Halford, 
2001; Al-Doss et al., 2010; Akhtariyeva et al., 
2019). Since protein synthesis is controlled by 

sections of genomic DNA, and the environment 
impacting biochemical and structural-functional 
features, the plant data based on protein 
polymorphism may not be inferior in 
informativeness of DNA markers. An additional 
advantage of using protein markers in 

identification and plant breeding is that 
inexpensive equipment makes analysis easy. 
In addition, the applied native and denaturing 
electrophoresis of prolamins is still used in the 
study of genetic control of reserve proteins 
synthesis in cereals (Pflüger et al., 2001) and 
oats (Lyubimova et al., 2020) and the 

identification of crop cultivars in alfalfa (Kakaei 
and Ahmadian, 2021). 

Additionally, the studies on protein 

polymorphism may also provide the basis for a 
strategy for selecting wheat genotypes with a 
specific combination of gliadin alleles based on 
molecular methods. Consequently, the study of 

genetic resources, from various countries with 
different climatic conditions based on the 
polymorphism of wheat prolamins, will help 
identify and trace the selection criteria and 
establish the gliadin 'profile' of the wheat 
genotypes for specific conditions. 

Thus, this study aims to: determine the 
gliadin 'profile' in the spring soft wheat 
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(Triticum aestivum L.) collection in the Russian 

and Kazakh regions, and determine genetic 
diversity through allelic variations in gliadin 
coding loci. 

 
 
MATERIALS AND METHODS 
 
A total of 139 samples obtained from a spring 
soft wheat collection comprising 62 from 
Russia (the Western Siberia region) and 77 

samples from Kazakhstan (the regions of 
Central, Eastern, and Western Kazakhstan) 
were studied. The study followed the 
methodology proposed by Metakovsky and 
Novoselskaya (1991) in conducting the 

electrophoresis process of gliadin. Gliadins 

were extracted from individually milled seeds 
by adding 150 µL of 70% ethanol. Acrylamide 
polymerization was initiated using 50 µL of 3% 
H2O2 in 45 mL of gel solution. Electrophoresis 
was conducted at 520 V for 4 h. The 
experiment used 10% trichloroacetic acid 
supplied with 0.05% of Coomassie Brilliant 

Blue R-250 in ethanol (Sigma-Aldrich, USA) for 
gel fixation and staining. The identification of 
gliadins 'profile' was done as per the catalogue 
of alleles of gliadin-coding loci (Metakovsky, 
1991). According to the wheat gene catalogue, 
the designation of gliadin loci were Gli-A1, Gli-
B1, Gli-D1, Gli-A2, Gli-B2, and Gli-D2 

(McIntosh et al., 2008). Alleles of loci were 
designated by letters of the Latin alphabet in 
sequence, i.e., for example, the genetic 
formula of the wheat cultivar, Chinese Spring: 
Gli-A1a, Gli-B1a, Gli-D1a, Gli-A2a, Gli-B2a, Gli-
D2a, will have an abbreviated notation: a, a, a, 

a, a, a. 
 
Statistical analysis 
 
The data compilation and analysis were carried 
out based on previously published studies of 
gliadin-coding loci (Metakovsky et al., 1993, 

1994, 2000; Metakovsky and Branlard, 1998; 
Dobrotvorskaya et al., 2009; Nikolaev et al., 
2009; Novoselskaya-Dragovich et al., 2011, 

2013; Utebayev et al., 2016, 2019).  
The formulation of intra-population 

diversity (μ), the proportion of rare alleles (h), 
the identity criterion (I), and the similarity 

index (r) was done according to Zhivotovsky 
(1979, 1991), and the degree of genetic 
diversity (H) was calculated according to Nei 
(1973) as follows: 

 

 
 

where: 

pi = is the allele frequency calculated by the 
formula, 
p = n/N, where n is the number of alleles, and 

N = is the sample volume. 
 
 
RESULTS 
 
In the spring soft wheat (Triticum aestivum L.) 
collection from Russia and Kazakhstan, Table 1 

presents the alleles of identified loci Gli-1 and 
Gli-2. Electrophoretic analysis of Russian wheat 
revealed that both monomorphic (63%, 39 out 
of 62 samples) and polymorphic (37%, 23 of 
62 samples) can serve as gliadin samples. The 

analysis of the genetic formulas of gliadin 

showed that in the loci Gli-A1, Gli-B1, Gli-D1, 
the alleles Gli-A1f (46.9%), Gli-B1e (43.7%), 
Gli-B1b (30.8%), and Gli-D1a (61.0%) were 
most frequent. The loci Gli-A2, Gli-B2, and Gli-
D2 were dominated by the alleles Gli-A2l 
(17.0%), Gli-A2m (16.9%), Gli-B2o (16.1%), 
Gli-B2r (14.5%), Gli-D2q (19.8%), and Gli-D2a 

(17.7%). Around eight to 17 alleles have been 
identified for each locus (Figure 1). 
 The electrophoregram analysis of the 
Kazakh wheat collection showed that about 
26.0% (20 out of 77) of the samples were 
polymorphic at the gliadin loci. The most 
common alleles of loci Gli-1 of Kazakh wheat 

partially coincide with the frequencies of 
Russian wheat (Figure 1). The occurrence of 
the allele Gli-A1f in Kazakh wheat was 47.4%, 
whereas in Russian, it was 46.9%. The locus 
Gli-B1 in Kazakh wheat was dominated by the 
allele Gli-B1e with a frequency of 72.0%, and 

in Russian wheat alleles, i.e., b (30.1%) and e 
(43.7%). The share of rare alleles (h), the 
degree of genetic diversity (H), and the intra-
population diversity (μ) of the wheat collection 
from Kazakh and Russia were calculated based 
on allele frequencies (Table 2). 

For both wheat groups, the indicators 

of intra-population and genetic diversities 
ranged from 0.45 (Gli-B1, Kazakhstan) to 0.91 
(Gli-B2, Siberia) (Table 2). The greatest value 

of μ and H for both wheat groups was noted for 
the locus Gli-B2, which is due to the presence 
of the highest number of identified alleles. On 
average, the greatest diversity in gliadin-

coding loci is recognized in Russian wheat 
samples. The indicator of the rare alleles 
proportion (h) characterizes the distribution of 
frequencies, which, when uneven, is always h 
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Table 1. Gliadin genetic formulas of bread wheat from Russia and Kazakhstan. 

Cultivars/advanced lines 
Gliadin-coding loci (Gli) 

A1 B1 D1 A2 B2 D2 

Bread wheat from Russia 

Aviada m b a d v q 
Adelina l a g a a l 
GAU 21-2018 d+g+i l f d+l r i 
GAU 6-2018 f e b l a q 
Zlatozara k b h* b v m 
Ikar l n a b b o 
Il‘inskaya f f a m d p 
Latona f e a m+q d q 
Line TGU-1 f l g f* r a 
Lutescens 585 f e a f o a 
Lutescens 70 f f b q+f b+k b+m 
Rechka c b a l+g r+o m+a 
Riks o b b f o q 
Serebrina b+o e a f n m 
SKENT-1 f b a* f m q 
SKENT-3 a e b f t a 
Surenta - 3 f f n+a m+q b b 
Surenta - 4 f+o b+e a k+f o+t l+p 
Surenta - 5 a e a s r r 
Surenta - 6 f e b m+q m+i b+q 
Surenta -7 f e b m l q 
Turinskaya o b a m c m 
Tyumenets 2 i e a a p k 
Tyumenochka c l h l r q 
Tyumenskaya 25 f e a q a k 
Tyumenskaya 27 f e a f o a 
Tyumenskaya 29 k+a+f e a m+i o q 
Tyumenskaya 30 f f+e f+h m+s m+a q+o 

Tyumenskaya 31 c b i m r a 
Tyumenskaya 32 m b f m t j 
Tyumenskaya 33 f e a m o q 
Tyumenskaya 80 k b f k r n 
Tyumenskaya yubileynaya f l+e l+f l+m m+o p+q 
Vesna j e a k c e 
Duet f+k b+e a d g+f m+a 
Izumrudnaya k b b b b r 
Il‘menskaya f b i u c h 
Il‘menskaya 2 f e a p o n 
Kvinta k e a n k g 
Kukushka f b a q m a 
Kukushka 12-6 f+h f+b+e c+a n+l f+m+b e+q+r 
Kukushka 14-6 c e g l b b 
Lutescens 23490 f e a p b b 
Milturum 12013 k+o m+e f+c b+l t+g l+j 
Rossiyanka f+k e+b a+b l+m t+r b+a 
Silach c l a k n e 
Uralochka f b a m j q 
Ural‘skaya 52 m e a q c i 
Ural‘skaya kukushka a+i b a l+n g+o d+l 
Fiton c-36 f e a s m a 
Chebarkul‘skaya f b a l+f b q+l 
Chelyaba f l a l d p 
Chelyaba 2 c+f+a b+e a i+f+l o+v+g i+k+l 
Chelyaba 75 i e a p k a 
Chelyaba 80 o b a l+b j l+n 
Chelyaba ranna d e a i f m 
Chelyaba stepnaya h e+d b n o k 
Chelyaba yubileynaya f l f l r a 
Chelyabinskaya 17 g+c+f+h b+a+e a+f+b b+i+q+l g+o+b+v+f j+l+s 
Erythrospermum 23390 f+k b+l a b+k i+p o 
Erythrospermum 24841 f e+l a b+l o+g l+a 
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Table 1 (cont‘d). 

Cultivars/advanced lines 
Gliadin-coding loci (Gli) 

A1 B1 D1 A2 B2 D2 

Erythrospermum 25787 f l a b r l 

Bread wheat from Kazakhstan 

Karagandinskaya 2 h+f b+e g q f k 
Karagandinskaya 21 h b* a v l i 
Karagandinskaya 30 f+h e f e+l t+m a 
Karagandinskaya 31 a e a e o a 
Karagandinskaya 70 f e g l f a 
Karagandinskaya 93 h e*(new) a s l r 
Lutescens 1021 k+f e g l p i 
Lutescens 1022 h b g+a s r a 
Lutescens 1052 f e*(new) g s ? i 
Lutescens 1098 f e b s r a 
Lutescens 1136 h e f l r q 
Lutescens 1153 f e g+a s r a 
Lutescens 1166 c b a t r m 
Lutescens 1192 a e a q r a 
Lutescens 1194 f e a s r o 
Lutescens 1212 f e*(new) a+g l r r 
Lutescens 1220 f+a e a l+s t+a+r a+r 
Lutescens 1221 f e a l t a 
Lutescens 1226 f e a l r a 
Lutescens 1228 m b a l p r 

Lutescens 1229 f e a l t a 
Lutescens 1235 f e a l b a 
Lutescens 1242 m+k e+b a e+l r+r*+d a+c 
Lutescens 1245 h e b s a a 
Lutescens 1272 k e g l r k 
Lutescens 1519 h e+b a s d i 
Lutescens 1541 m+f e a+b m+t r+m a 
Lutescens 1545 f e a t r a 
Lutescens 1558 a e a e o q 
Lutescens 1569 o b b l r a 
Lutescens 1614 o e i b a m 
Lutescens 1669 f e a t f a 
Lutescens 1764 h b a s f a 
Lutescens 1991 i e f e r q 
Lutescens 2028 h+n b a l o a 
Lutescens 2055 f e a i b a 
Lutescens 2102 f e a e o a 
Lutescens 2174 f b a s b q 
Lutescens 270 k+f e a q+g t r 
Lutescens 720 i e a q k m 
Lutescens 932 f e a l f i 
Lutescens 944 c e a l d i 
Sary-Arka f e a l o a 
GVK - 2077-11 f e a c r p 
VK - 3488 k e a f m p 
VK - 3632 f e a x i+v r+g 
GVK - 1337/10 f e a m r s 
GVK - 1369-2 f+d e+l a+f e+k* l+r a+l 
GVK - 1596/6 f e+l g+a k f i 
GVK - 1672/8 c l f j g a 
GVK - 1678/12 f e a h k a 
GVK - 1719/1 f e a m b g 
GVK - 1857-9 d l a b r a 
GVK - 1860-8 f e a n r a 
GVK - 2033/7 c l b m g p 
GVK - 2036-15 f e g+a f+i m a*+a 
GVK - 2055-1 f e a m g p 
GVK - 2097/14 f e a n r a 
GVK – 2127 c l g m g p 
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Table 1 (cont‘d). 

Cultivars/advanced lines 
Gliadin-coding loci (Gli) 

A1 B1 D1 A2 B2 D2 

GVK – 2161 f+c e+l f+g e+k+f f+g s+a 
GVK 2140/6 d l f b e q 
Zaul‘binka f e g m a p 
Zyryanovka c e+b a l d+n k 
Lada f e a m m e 
Lyazat o e b m t i 
381 MC f l h l a a 
424 MC k e g i t g 
Aktobe 10 a b* f s n m 
Aktobe 130 r g* f p e b 
Aktobe 14 f e a q b+f q 
Aktobe 32 i e a t i s 
Aktobe 33 m b f r p s 
Aktobe 39 f e a l k a 
Aktobe 42 k f g d n j 
Aktyubinka c e f s k m 
Stepnaya 1 r e a e h s 
Stepnaya 253 f+m e a q t+p r 
 

 

 
 

Figure 1. Allele frequencies (%) in Gli loci identified in the studied collection of 139 samples of spring 
soft wheat from Russia and Kazakhstan. 
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Table 2. Genetic diversity (H), intra-population diversity (μ), and frequencies of rare alleles (h) in 139 

samples of spring soft wheat from Russia and Kazakhstan. 

Diversity 
estimates 

Country 
Gliadin-coding loci (Gli) 

Mean 
A1 B1 D1 A2 B2 D2 

Н Russia 0.75 0.69 0.59 0.89 0.91 0.89 0.79 
Kazakhstan 0.74 0.45 0.57 0.88 0.89 0.80 0.72 

μ±Sμ Russia 9.29±0.74 5.22±0.48 5.62±0.55 12.13±0.60 15.19±0.66 14.05±0.81 10.25±0.64 
Kazakhstan 8.25±0.54 3.18±0.27 4.14±0.32 15.07±0.98 15.52±0.74 10.79±0.77 9.49±0.60 

h±Sh Russia 0.28±0.05 0.34±0.06 0.37±0.06 0.13±0.04 0.10±0.03 0.17±0.04 0.23±0.05 
Kazakhstan 0.25±0.05 0.36±0.05 0.31±0.05 0.25±0.05 0.15±0.04 0.28±0.05 0.26±0.05 

 
 
Table 3. Genetic similarity (r) and identity criterion (I) of groups of spring soft wheat from Russia and 

Kazakhstan according to the frequency of alleles of Gli loci. 

Compared 
groups 

Estimates 
Gliadin-coding loci (Gli) 

A1 B1 D1 A2 B2 D2 

Russia –  
 
Kazakhstan 

r 0.80 ± 
0.02 

0.90 ± 
0.02 

0.96 ± 
0.01 

0.88 ± 
0.02 

0.86 ± 
0.02 

0.88 ± 
0.02 

I 68.60 

(27.6) 

34.30 

(19.7) 

13.72 

(18.3) 

41.16 

(28.9) 

48.02 

(31.4) 

41.16 

(28.9) 

Note: in brackets χ2 for 5% significance level 

 
 
> 0. In the latest study, this criterion ranged 
from 0.10 ± 0.03 (Gli-B2, Siberia) to 0.37 ± 
0.06 (Gli-D1, Russia). Based on these findings 
in both groups, the loci Gli-1 is characterized 

by an uneven ratio between the frequencies of 
rare and frequent alleles. 
 The comparison of the frequencies of 
alleles, according to the indicator of genetic 

similarity (r) and the criterion of identity (I), 
evaluated the degree of differences in the 
allelic composition of the gliadin-coding loci 

between Russian and Kazakh wheat, (Table 3). 
The genetic similarity (r) does not exceed unity 
but may be equal to one if the compared 
groups are identical in the number and 
frequency of alleles. If the obtained value 
exceeds the table value of χ2 at a given level of 

significance, then a significant difference 
between the groups based on genetic similarity 
(r) exists, which defines the essence of 
criterion (I) (Zhivotovsky, 1979). The results 
also revealed that the values of the identity 
criterion (I) exceeded the table value of χ2 
(Table 3). Accordingly, the studied groups of 

spring soft wheat samples differ significantly 
from each other in gliadin-coding loci, except 
for the locus Gli-D1. 
 
 
DISCUSSION 
 

The study and comparison of genetic resources 
of different ecological and geographical origins 
is an important step in the creation of new 
wheat genotypes. With the wheat‘s earlier 
identification results, the conduct of 

comparative analyses of the obtained genetic 
formulas of gliadin revealed identical alleles at 
the loci Gli-1, whereas at the loci Gli-2, the 
allelic composition was different 

(Novoselskaya-Dragovich et al., 2003; 
Utebayev et al., 2019). The probable 
combination of alleles Gli-A1f, Gli-B1e, and Gli-
D1a can be associated with some valuable 

characteristics. 
The results made it possible to identify 

the preference of selection of the wheat 

genetic types with a combination of Gli loci 
alleles by Russian and Kazakh breeders, which 
is consistent with one of the directions of the 
5G strategy in the crop improvement 
(Varshney et al., 2020). As a matter of fact, in 
certain environmental conditions, a specific 

'portrait' of wheat cultivars is formed with a 
predominance of gliadin alleles associated with 
certain valuable features (Metakovsky et al., 
2019; Noma et al., 2019). To visualize the said 
wheat 'portrait', the study compiled the so-
called 'ideal' electrophoretic spectrum of gliadin 
for several countries (Figure 2), which is 

created based on common blocks of gliadin 
identified by the researchers at different times 
(Table 4). 

The idea of describing the genetic 
diversity of wheat from gliadin-coding loci 
based on an 'ideal spectrum' was proposed by 
an analogy of creating an 'ideal plant 

architecture' (Guo et al., 2020; Wang et al., 
2021). Therefore, the cultivars close to the 
'ideal' spectrum in gliadin alleles should have a 
complex of economically valuable features. For 
this, the spectrum of Russian wheat that 
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Figure 2. 'Ideal' Electrophoregrams of gliadin of the wheat from different countries: RU – Russia, KZ 
– Kazakhstan, SP – Spain, CA – Canada, FR – France, CN – China, IT – Italy, B1 (St) – standard, soft 

wheat cultivar Bezostaya 1. 
 
 
Table 4. Variety of allele gliadin-coding loci in wheat of different origins 

Countries 
Gliadin-coding loci (Gli) 

References 
A1 B1 D1 A2 B2 D2 

Canada  m d j m c h Metakovsky et al.,1993 
China a l a g ? b Novoselskaya-Dragovich et al., 2011 
France o f b g g a Metakovsky and Branlard, 1998 
Italy a g k g o a Metakovsky et al.,1994 
Kazakhstan  f e a l r a Utebayev et al., 2016; Utebayev et al., 2019; and current 

study 
Russia f e a q o e Dobrotvorskaya et al., 2009; Nikolaev et al., 2009; 

Novoselskaya-Dragovich  et al., 2013; and current study 
Spain o f b g o a Metakovsky et al., 2000 

 

consist of blocks of components controlled by 
alleles, i.e., f, e, a, q, o, and e, serves as an 

example (Figure 2). Moreover, it also 
concluded that the main pool of high-quality 
Russian wheat consists of the cultivars of 
Saratov and Omsk selection, which practically 
repeat the 'ideal' spectrum, except for the 

locus Gli-B2 alleles (Bebyakin and Balabolina, 

1980; Novoselskaya-Dragovich et al., 2003, 
2013). 

As for Kazakh wheat, its 'ideal' 
spectrum coincides with the spectrum of 
Russian wheat at the loci Gli-1, as Kazakhstan 
breeders often take Russian cultivars as 
parental genotypes (Shavrukov et al., 2014; 

Utebayev et al., 2016, 2019). Moreover, the 
selection process to improve grain quality fully 
explains the similarity in the loci Gli-1, since 
the loci Gli-1 alleles are more associated with 

the qualitative characteristics of the grain, 
while the loci Gli-2 alleles are more related 

with the adaptability to external conditions (Li 
et al., 2009; Novoselskaya-Dragovich et al., 
2013). However, few studies found that some 
alleles of the loci Gli-2 can also affect positively 
(Noma et al., 2019) and negatively (Li et al., 

2018) the quality of wheat grain. 

Notably, the gliadin spectra of wheat in 
Italy, France, and Spain also have identical loci 
Gli alleles. The similarity of the 'ideal' spectra 
of wheat gliadin of Spain and France may be 
due to the use of the same set of parental 
types and the fairly close climatic conditions. 
Interestingly, the cultivar Cappelle Desprez, 

which is included in the genealogy of French 
cultivars, such as, Tobak, Rudi, Aiglon, and 
Trocadero (GRIS), needs further studying. The 
gliadin formula of Cappelle Desprez (o, f, b, g, 
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g, and g) (Metakovsky and Branlard, 1998) is 

close to the formula of the 'ideal' spectrum for 
Spain and France (Table 3). This cultivar is 
well-known to form a stable yield (Mesdag, 

1985) and is highly resistant to striped rust 
(Pawar et al., 2016). However, it is 
characterized by low resistance to drought 
(Fábián et al., 2011) and classified as a cultivar 
with medium-baking properties (Burnouf and 
Bouriquet, 1980). The wheat cultivars viz., 
Ducat (o, f, b, g, g, h), Rudi (o, h, b, g, a), and 

Top (o, f, b, g, g, a) were included in the group 
with best- and average- baking properties and 
also close to the 'ideal' spectrum of gliadin 
(Burnouf and Bouriquet, 1980; Metakovsky 
and Branlard, 1998). 

The alleles, Gli-B1e, Gli-B1g, and Gli-

B1f, present in the cultivars of Russia, 
Kazakhstan, France, and Italy, also need 
checking. These alleles control the synthesis of 
gliadin blocks similar to each other in 
electrophoretic mobility, have a consonant 
nucleotide sequence (Chebotar et al., 2012), 
and likely have the same effect on grain 

quality. The conclusion suggested that if the 
electrophoretic spectrum of gliadin is close to 
the 'ideal' for these conditions, this can also 
guarantee the fabrication of productive, stress-
resistant wheat types and cultivars with good 
baking properties. However, the increase in 
productivity decreases plant fitness and 

adaptability, such as, a decrease in plant 
growth and the formation of vertical root 
growth (Weiner, 2019). Moreover, the desire to 
bring the gliadin profile of wheat closer to the 
'ideal' spectrum may reduce the 'selfishness' of 
the plant, i.e., some properties of individual 

plants may deteriorate, such as, adaptability to 
external stressors (Abbai et al., 2020), which is 
a negative side in plant breeding. These 
negative phenomena can be avoided by taking 
into account the trade-offs between plant 
traits, such as, grain yield and quality (Pleijel 
and Uddling, 2012). 

 
 
CONCLUSIONS 

 
Based on the study results of gliadin 
electrophoresis of the spring soft wheat 
collection from Russia and Kazakhstan, an 

assessment of the allelic diversity of gliadin loci 
was done. Genetic formulas were compiled, 
and based on the frequency of occurrence, the 
predominant alleles of gliadin were identified in 
the studied wheat collection. In Russian 
cultivars with climatic conditions of Siberia, the 

alleles Gli-A1f (46.9%), Gli-B1e (43.7%), Gli-
B1b (30.8%), Gli-D1a (61.0%), Gli-A2l 

(17.0%), Gli-A2m (16.9%), Gli-B2o (16.1%), 

and Gli-D2q (19.8%) were frequently 
observed. The wheat collection from the 
Central, Eastern, and Western regions of 

Kazakhstan was dominated by alleles Gli-A1f 
(47.4%), Gli-B1e (72.0%), Gli-D1a (61.7%), 
Gli-A2l (25.3%), Gli-A2s (16.2%), Gli-B2r 
(25.7%), and Gli-D2a (40.3%). Based on the 
proposed concept of the "ideal" electrophoretic 
spectrum, the study established the spectrum 
of Russian wheat consisting of the blocks of 

components controlled by alleles, i.e., f, e, a, 
q, o, and e. The 'ideal' spectrum wheat from 
Kazakhstan: f, e, a, l, r, and a matches with 
the spectrum of Russian wheat at the loci Gli-
1, since Kazakhstan breeders often chose 

Russian cultivars as parental genotypes. The 

wheat cultivars with an electrophoretic 
spectrum close to the 'ideal' one are believed 
to have a complex of economically valuable 
features. Furthermore, the genotypes with 
such gliadin formula can serve as prospective 
breeding materials for elite grain quality and 
better adaptability to the environment of 

Russia (the Western Siberia region) and 
Kazakhstan (the regions of Central, Eastern, 
and Western Kazakhstan). 
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