NITRIFICATION INHIBITORS IMPACT ON NITROUS OXIDE EMISSION AND AMMONIA VOLATILIZATION: A SUSTAINABLE MEASURE TOWARD A HYGIENIC ENVIRONMENT

1Institute of Soil Chemistry and Environmental Sciences, AARI, Faisalabad, Pakistan
2Institute of Soil and Environmental Sciences, UAF, Pakistan
3R&D Department, Fauji Fertilizer Company Limited, Rawalpindi, Punjab, Pakistan
4Department of Agronomy sub-campus Depalpur, Okara, UAF, Pakistan
5Department of Environmental Sciences, Central University of Jharkhand, Brambe, Ranchi, India
6Soil Bacteriology Section, AARI, Faisalabad, Pakistan

*Corresponding author email: an_uaf99@yahoo.com

Email addresses of co-authors: ifrasaleem17@gmail.com, mohamgill@uaf.edu.pk, nirmali.bordoloi@cuj.ac.in, abbasshoukat3854@gmail.com, amarafarooq2020@gmail.com, nasirrasheed@gmail.com, imranashraf.immi@gmail.com, munirzia@gmail.com, masood.awan@uaf.edu.pk, shabanaehsans@gmail.com

SUMMARY

Nitrogen (N) application to agricultural fields warrants curtailing nitrous oxide (N2O) emission and ammonia (NH3) volatilization for improved use efficiency with a less environmental footprint of N. As a means of mitigating N2O emissions, the efficacy of nitrification inhibitors (NIs) is well established but the efficacy of NIs in reducing NH3 volatilization is not well understood. The study investigated the efficacy of neem oil, pomegranate leaf extract, and dicyandiamide (DCD) coating on prilled urea for reducing N2O emissions and the trend of NH3 release using static air closed chamber technique in an incubation room. The results showed that all NIs reduced N2O flux in the order of 37%–42% by DCD urea, 19%–34% by neem oil coated urea (NOCUs), and 11%–16% by pomegranate leaf extract coated urea (PLECU). However, over uncoated urea, 43%–54% NH3 flux was increased by DCD, 10%–32% by NOCUs, and significantly the least increase (5%–14%) in NH3 cumulative flux was shown by PLECU. Dicyandiamide significantly reduced N2O flux more than all other treatments, and PLECU showed the least increase in NH3 emission when compared with other coated treatments. Hence, it is suggested that neem oil and pomegranate leaf extract could be used successfully not only for mitigating N2O emission, but also lessen environmental damages in association with managed N intense agriculture. Moreover, research focus on the increase in NH3 volatilization using DCD needs serious attention, especially in alkaline calcareous soils.

Keywords: Coated urea, dicyandiamide, nitrous oxide, nitrogen inhibitors, neem oil, pomegranate

Key findings: Two natural and one synthetic nitrification inhibitor were assessed as coating additives for granular urea for reducing nitrous oxide emissions and ammonia volatilization. The N2O cumulative flux was significantly decreased from 11% to 42%, however, cumulative NH3 flux was increased from 5% to 54% by using NIs amended urea over urea treatment. Neem oil and pomegranate leaf extract are recommended as urea coating additives for reducing N2O gas emission. However, an increase in NH3 volatilization can be given more research focus.

376
INTRODUCTION

Nitrogen (N) is not only essential for all life on earth, but also a major contributor to environmental degradation, particularly through atmospheric emissions of nitrous oxide (N_2O) and ammonia (NH_3). The N paradox requires finding solutions for the rational use of synthetic N to save input costs and the environment by reducing unwanted emissions (Norton and Yang, 2019; Bordoloi et al., 2020; Kirti et al., 2020). The emission flux is mainly influenced by the amount, form, timing, and method of applied fertilizer. In agroecosystems, nearly 15% of applied synthetic N could be lost in the form of N_2O when N fertilizer rates exceed uptake by crops (Signor and Cerri, 2013; Mahakosee et al., 2015). Compared with 1995, the projected estimated concentrations of NO_x (N_2O, NO, NO_2) will increase two to fourfold by 2025 (Vallack et al., 2001). Among the greenhouse gases, N_2O shares 20% of global warming (Olfs et al., 2018; Fagodiya et al., 2020), and has a higher risk (300×) of global warming than carbon dioxide (IPCC, 2013; Bordoloi et al., 2020). Furthermore, N_2O residential time in the stratosphere is significantly higher (~120 years) than those of black carbon (~5 days) or methane (~12 years) (Millar et al., 2014). A little increase in atmospheric N_2O quantity may have a huge impact on global warming and stratospheric ozone depletion along with agronomic and monetary losses of N at the farm level (IPCC, 2014; Kirti et al., 2020; Santos et al., 2020).

Other than N_2O, a major form of N loss is the volatilization of NH_3. The NH_3 emissions drastically increased to 64% from N fertilization and are expected to reach 80% by 2030, which is equivalent to 20%–70% of the total farmland N losses (Pan et al., 2016; Raza et al., 2018). Along with farm scale losses, the volatilized NH_3 may have detrimental effects at the ecosystem scale, such as, acidification in terrestrial systems, eutrophication of aquatic systems, and decline in biodiversity (Shahzad et al., 2019; Fagodiya et al., 2020). Being one of the major atmospheric pollutants, NH_3 also poses increasing risks to human health. Different forms of N cycling like the ammonium nitrification contribute to groundwater contamination by leaching of nitrate and environmental degradation by emission of N_2O to the atmosphere (Ti et al., 2019; Swaim et al., 2021). Furthermore, NH_3 contributes to global warming by reacting with nitric acid and sulfuric acid in the atmosphere, producing secondary aerosols and haze pollution (Saggars et al., 2013; Raza et al., 2019). The NH_3 emitted from particulate matter (PM) has the potential to reduce human life expectancy by affecting respiratory tissue (Wagner et al., 2015). The increased death rate of humans has been reported due to increasing ammonium aerosol concentration in the atmosphere (Sutton et al., 2011; Ti et al., 2019) and the cost associated with the impact of fine particles (PM$_{2.5}$) on human health due to NH_3 aerosols is up to USD 75 per kg of N from NH_3 pollution (Stokstad, 2014; Ti et al., 2019).

The application of nitrification inhibitor (NI) is a viable approach to decrease N fertilizer loss and enhance nitrogen use efficiency (NUE) in agroecosystems (Wang et al., 2020; Bordoloi et al., 2020). The NIs also have a drastic influence on N_2O emissions reduction (Soares et al., 2012; Gilsanz et al., 2016) without yield penalties. The synthetic NIs like acetylene, nitrapyrin, 2-amino-4-chloro-6-methylpyrimidine, 2-sulfanilamidothiazole, 3,4-Dimethylpyrazole phosphate, and 4-amino 1, 2, 4-triazole, have been found to reduce N_2O emission from the soil (Aulakh et al., 2001; Kim et al., 2012). The application of NI can temporarily suppress the transformation of soil ammonium (NH_4^+) to nitrate (NO_3^-). As a result, the substrate availability for NO_3^- formation gets reduced and affects the denitrification process of N_2O emission (Chen et al., 2008).

Among plant materials, Nimin (a commercially available concentrated neem extract prepared from neem oil and neem Cake) has been reported to reduce N$_2$O-N emissions by 63% (Majumdar et al., 2002; Datta and Adhya, 2014). Pomegranate is a member of the family Punicaceae. The chemical compounds present in it possess strong antibacterial, toxicological, and pharmacological properties (Abbasi et al., 2011; Behera et al., 2017). The powder of pomegranate fruit (PFP) can reduce urea breakdown (Al-Sabahi et al., 2017). Dicyandiamide, a strong synthetic nitrification inhibitor used with solid urea is produced and marketed in Japan and Germany (Hatano et al., 2019), which has been reported to reduce
gaseous emissions significantly from the urea fertilized fields (Deklein et al., 2011; Zhang et al., 2015). But some issues are linked with the use of DCD, i.e., its high cost, availability, and toxicity (Byrne et al., 2020). Hence, there is a dire need to exploit some cheap and locally available natural materials that can reduce nitrogenous emissions.

Earlier, investigations have been made to assess the impact of NIs either on the emission of N\textsubscript{2}O or methane, but the information lacks regarding the effect of NIs on NH\textsubscript{3} emissions (Majumdar et al., 2002; Zhou et al., 2016). In the current study, simultaneous measurements were made for N\textsubscript{2}O and NH\textsubscript{3} gases to evaluate the efficacy of neem oil and pomegranate leaf extract coating on prilled urea and DCD for reduced N emissions under controlled conditions. The objectives of the study were to (i) quantify the N\textsubscript{2}O and NH\textsubscript{3} emissions and (ii) evaluate the efficacy of tested substances in reducing these emissions.

MATERIALS AND METHODS

A controlled study was conducted to evaluate the efficacy of neem oil and pomegranate leaf extract coating on prilled urea for reducing the emissions of N\textsubscript{2}O and NH\textsubscript{3}. Their potential in lowering the NH\textsubscript{3} and N\textsubscript{2}O emissions was compared with the most extensively used NI in agriculture commercially called DCD (Deklein et al., 2011; Zhang et al., 2015). Neem oil coated urea (NOCU) was developed using two variants of neem oil viz. six months old extracted (NOCU1) and freshly extracted neem oil (NOCU2) @ 500 and 1,000 mg kg-1. The two variants of neem were used to compare their efficiency based on their time of extraction. Similarly, pomegranate leaf extract coated urea (PLECU) was prepared @ 500 and 1,000 mg kg-1, and blended DCD urea @ 96 and 196 mg kg-1 was formulated (Table 1).

Experimental site and conditions

The trial was accomplished in the soil fertility laboratory of the Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. The soil was collected from the research area of the Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan, and the physicochemical properties of the soil were determined before the experiment (Table 2). The pilot-scale study was designed to simulate urea application conditions in static air closed polyvinylchloride (PVC) chamber as in a cropped field with some minor modifications (Leiber-Sauheitl et al., 2014; Olfs et al., 2018). A 12 kg sieved (< 2 mm), air-dried, and mechanically homogenized soil was placed in the PVC chamber as in the cropped field. The chambers were then fitted with an airtight cap having an outlet pipe. The fertilizer-soil mixture was constantly kept moist at 50% of its maximum water-holding capacity, and incubation was done at ambient temperature for 60 days in the laboratory. The experiment was conducted under a completely randomized design (CRD) with 10 treatments and three replications, for a total of 30 experimental units. The recommended dose of N (160 kg ha-1) was used.

Table 1. Details of treatment, materials, and rates used in the study.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Coating concentration/rate (mg kg-1 of urea)</th>
<th>Neem variants</th>
<th>Type of nitrification inhibitors (NIs) used</th>
<th>Method of coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (zero N fertilizer)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urea (160 kg N ha-1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NOCU1 (neem oil coated urea)</td>
<td>500; 1,000</td>
<td>old-extracted neem oil</td>
<td>NNI</td>
<td>Sprinkling</td>
</tr>
<tr>
<td>NOCU2 (neem oil coated urea)</td>
<td>500; 1,000</td>
<td>freshly-extracted neem oil</td>
<td>NNI</td>
<td>Sprinkling</td>
</tr>
<tr>
<td>PLECU (pomegranate leaf extract coated urea)</td>
<td>500; 1,000</td>
<td>-</td>
<td>NNI</td>
<td>Sprinkling</td>
</tr>
<tr>
<td>DCD (dicyandiamide)</td>
<td>96; 169</td>
<td>-</td>
<td>Synthetic</td>
<td>Blending</td>
</tr>
</tbody>
</table>
Table 2. Physicochemical properties of the experimental soil.

<table>
<thead>
<tr>
<th>No.</th>
<th>Soil parameters</th>
<th>Values</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sand (%)</td>
<td>30.3</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Silt (%)</td>
<td>40.0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Clay (%)</td>
<td>29.7</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Textural class</td>
<td>Clay loam</td>
<td>Bouyoucos, 1962</td>
</tr>
<tr>
<td>5</td>
<td>Water holding capacity (%)</td>
<td>40</td>
<td>Wang et al., 2020</td>
</tr>
<tr>
<td>6</td>
<td>PH</td>
<td>8.4</td>
<td>U.S. Salinity Laboratory Staff, 1954</td>
</tr>
<tr>
<td>7</td>
<td>ECe (dS m^{-1})</td>
<td>0.92</td>
<td>U.S. Salinity Laboratory Staff, 1954</td>
</tr>
<tr>
<td>8</td>
<td>Available phosphorous (mg kg^{-1})</td>
<td>7.50</td>
<td>Olsen (1954)</td>
</tr>
<tr>
<td>9</td>
<td>Extractable potassium (mg kg^{-1})</td>
<td>187</td>
<td>Method 10a and 11a of U.S. Salinity Lab. Staff, 1954</td>
</tr>
<tr>
<td>10</td>
<td>Ammoniacal nitrogen (mg kg^{-1})</td>
<td>3.5</td>
<td>Tandon and Tiwari, 2009</td>
</tr>
<tr>
<td>11</td>
<td>Nitrate nitrogen (mg kg^{-2})</td>
<td>5.5</td>
<td>Tandon and Tiwari, 2009</td>
</tr>
</tbody>
</table>

Preparation of neem oil, pomegranate leaf extract coated, and dicyandiamide blended urea

The NOCU was made by weighing 20 g of neem oil in 100 mL of acetone to obtain a 20% solution of neem oil. The prilled urea was placed on a plastic sheet, and a thin film was made on it by taking 2.5 mL of prepared 20% acetone solution to get a NOCU with 500 mg kg^{-1} level of the neem-oil. Systematically mixing and air drying of NOCU was done before storage. Likewise, a 1,000 mg kg^{-1} NOCU was primed by taking 5 mL of above 20% acetonic solution of neemoil (Kumar et al., 2010).

To prepare the pomegranate leaf extract, a calculated quantity (1,000 g) of mature dark green leaves was taken in 10,000 mL of distilled water. The suspension was boiled for 10–15 minutes and kept soaked for three hours. The boiled suspension was filtered two times using Whatman No.40 filter paper in pressure filtration assembly. The filtrate was collected and concentrated at 55 °C by using a vacuum rotary evaporator (Buchi-RE 121, Switzerland) to obtain crude extract powder. The PLECU was prepared by dissolving 20 g crude extract powder in 100 mL ethanol, ether, and distilled water (8:1:1) (Ibrahim et al., 2014; Tomar et al., 2015). The prilled urea was placed on a plastic sheet, and a thin film was made on it by taking 2.5 mL of prepared 20% acetone solution to obtain a PLECU, containing 500 mg kg^{-1} dose of the extract. Systematically mixing and air drying of PLECU was done before storage. Likewise, 1,000 mg kg^{-1} PLECU was primed by taking 5 mL of above 20% solution of pomegranate leaf extract (Kumar et al., 2010). DCD blended urea was formulated simply by mixing 96 and 169 mg DCD with one kilogram of urea in a closed container and mixed well (Malla et al., 2005; Raza et al., 2018).

Gas measurements

Simultaneous measurements of trapped gases, i.e., NH_{3} and N_{2}O evolved during the incubation of treated and untreated soils, were recorded. The direct measurements of N_{2}O were made by using a portable gas analyzer (GAS Tiger 6000 Z4 Host gas analyzer, Wandi, China) (Singh et al., 2019; Bell et al., 2020). While the NH_{3} volatilization was measured using the enclosed method using 4% boric acid solution as NH_{3} absorbent (Akhtar et al., 2012). The readings were recorded after two, four, 10, 20, 30, 40, 50, and 60 days of incubation (Singh et al., 2013). To decrease the difference in the flux pattern, sampling was done between 10 am to 12 pm (Sapkota et al., 2014).

Calculation of gas flux rates

Nitrous oxide and ammonia flux

The flux rates (mg N m^{-2} d^{-1}) were calculated using the following equation (Figure 1) (Singh et al., 2013; Akhtar et al., 2020):

\[F = \rho \times \frac{V}{A} \times \frac{\Delta C}{\Delta t} \times \frac{273}{T + 273} \]

Where \(F \) is gas flux (mg N m^{-2} d^{-1}), \(\rho \) is the density of the gas (gm^{-1}), \(V \) is the headspace
volume of the chamber (cm\(^3\)), A is the base area of the chamber (cm\(^2\)), \(\frac{\Delta C}{\Delta T}\) is an average rate of change in concentration for the interval (days), and T is the temperature in the chamber (K).

The cumulative flux

The cumulative N\(_2\)O and NH\(_3\) flux were calculated by multiplying the average emission rate of two consecutive readings by the period length between the readings and adding that value to the previous cumulative sum (Recio et al., 2018).

Figure 1. Schematic scheme of measuring nitrous oxide and ammonia emissions using static chamber.
Percent reduction in flux

Percent reduction in the cumulative N$_2$O-N fluxes was determined by the following formula (Zhou et al., 2016):

$$\text{% Reduction in N}_2\text{O-N flux} = \frac{[(A-C)+(B-D)]}{(A-C)} \times 100$$

Where A is the total N$_2$O-N emission from urea only treatment (raw urea), B is the total N$_2$O-N emission from urea + NI treatment, C is the total N$_2$O-N emission from control (without any treatment), D is the total N$_2$O-N emission from N only treatment (A) minus the total NH$_3$-N emission from control (C).

Percent increase in ammonia flux

The percent increase in the cumulative ammonia nitrogen (NH$_3$-N) fluxes over urea was calculated from the following formula:

$$\text{% Increase in NH}_3\text{N flux} = \frac{A-C}{C} \times 100$$

Where A is the total NH$_3$-N emission from urea + NI treatment and C is the total NH$_3$-N emission from urea (raw urea).

Statistical analyses

Significant means were evaluated by variance analysis (ANOVA) and using Tukey HSD in all pairwise comparison tests. Statistical significance was determined at the α 0.05 probability level. Statistical analyses were performed using Statistix 8.1 version (USA) (Singh et al., 2013).

RESULTS

Emission of ammonia

The NH$_3$-N cumulative flux ranged from 13 to 68 mg m$^{-2}$ during 60 days of the study in different treatments with a total loss of 4.95 kg NH$_3$-N ha$^{-1}$. A small NH$_3$-N daily flux was observed on day two after the application of fertilizers in all the experimental units containing urea and urea plus nitrification inhibitors. The highest peak of NH$_3$-N emission was observed on day four in all the treatments. After day four, this peak declined and reached a low level of NH$_3$-N flux in all the treatments on day 60. The soil was incubated for 60 days. All the means were significantly different from each other on days two, four, 10, and 20, and on days 30, 40, 50, and 60, means were not different statistically from each other. The honest significant difference (HSD) ($P = 0.05$) was 0.82, 0.69, 0.76, 0.70, 0.78, 1.07, 1.07, and 0.93 for two, four, 10, 20, 30, 40, 50, and 60 days, respectively.

The data given in Figure 2 indicated that the daily NH$_3$-N flux ranged between 0.40 to 3.57 mg m$^{-2}$ day$^{-1}$ in the control treatment, which was between 0.46 mg m$^{-2}$ day$^{-1}$ to 15.38 mg m$^{-2}$ day$^{-1}$ in uncoated urea. For the coated treatments, the daily NH$_3$-N flux ranged between 0.56 to 16.0 mg m$^{-2}$ day$^{-1}$ in NOCU1 used @ 500 mg kg$^{-1}$; in NOCU1 where it was used @ 1,000 mg kg$^{-1}$ the daily NH$_3$-N flux ranged between 0.56 to 16.93 mg m$^{-2}$ day$^{-1}$. As for NOCU2 (500 mg kg$^{-1}$), the daily NH$_3$-N flux ranged between 0.56 to 16.26 mg m$^{-2}$ day$^{-1}$, and where it was used @ 1,000 mg kg$^{-1}$, the daily NH$_3$-N flux ranged between 0.62 to 18.0 mg m$^{-2}$ day$^{-1}$. Similarly, in PLECU, the range of daily NH$_3$-N flux was 0.47 to 14.99 mg m$^{-2}$ day$^{-1}$ and 0.48 to 15.59 mg m$^{-2}$ day$^{-1}$ in 500 mg kg$^{-1}$ and 1,000 mg kg$^{-1}$, respectively. In DCD @ 96 mg kg$^{-1}$, the daily NH$_3$-N flux was ranged between 0.66 to 20.86 mg m$^{-2}$ day$^{-1}$, and 0.68 to 21.83 mg m$^{-2}$ day$^{-1}$ @ 169 mg kg$^{-1}$ coating concentration.

A higher coating concentration produced more NH$_3$ emissions than a lower coating rate. During the entire experimental period, higher NH$_3$ daily flux was calculated in DCD treatment applied at a higher coating rate of 169 mg kg$^{-1}$, followed by the NOCU2 @ 1,000 mg kg$^{-1}$, NOCU1 @ 1,000 mg kg$^{-1}$, and PLECU @ 1,000 mg kg$^{-1}$. The urea only treatment and the lowest daily flux was observed in control. Similarly, at a lower coating concentration (96 mg kg$^{-1}$), DCD maintained more NH$_3$ daily flux than all other treatments, which was followed by the NOCU2 @ 500 mg kg$^{-1}$, then NOCU1 @ 500 mg kg$^{-1}$, with PLECU @ 500 mg kg$^{-1}$ showing the lowest increase in NH$_3$ daily flux (Figure 2).

An increase in cumulative NH$_3$-N flux over urea only treatment was observed in all the urea plus NIs treatments at varying levels. Irrespective of the coating concentration, the percent increase in NH$_3$-N cumulative flux by NOCU1 ranged between 10% to 22%, 13% to 32% by NOCU2, and 5% to 14% by PLECU, while it ranged from 43% to 54% by DCD. Resultantly, the maximum percent increase over urea in NH$_3$-N cumulative flux during 60 days of the incubation was observed by DCD, and PLECU @ 500 mg kg$^{-1}$ showed the least increase in NH$_3$-N cumulative flux (Table 3).
Figure 2. Daily ammonia flux (mg m\(^{-2}\) day\(^{-1}\)) as affected by the application of neem oil coated urea (NOCU1 and NOCU2), pomegranate leaf extract coated urea (PLECU), and dicyandiamide (DCD) amended urea. Vertical bars indicate the standard error.

Table 3. Percent reduction in cumulative N\(_2\)O flux and percent increase in cumulative NH\(_3\) flux, over urea as affected by different nitrification inhibitors.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Reduction in N(_2)O cumulative flux (%)</th>
<th>Increase in NH(_3) cumulative flux (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urea</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NOCU1 (neem oil coated urea) @500 mg kg(^{-1})</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>NOCU1 (neem oil coated urea) @1,000 mg kg(^{-1})</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>NOCU2 (neem oil coated urea) @500 mg kg(^{-1})</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>NOCU2 (neem oil coated urea) @1,000 mg kg(^{-1})</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>PLECU (pomegranate leaf extract coated urea)@500 mg kg(^{-1})</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>PLECU (pomegranate leaf extract coated urea)@1,000 mg kg(^{-1})</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>DCD (dicyandiamide) @96 mg kg(^{-1})</td>
<td>37</td>
<td>43</td>
</tr>
<tr>
<td>DCD (dicyandiamide) @169 mg kg(^{-1})</td>
<td>42</td>
<td>54</td>
</tr>
</tbody>
</table>

Emission of nitrous oxide

The N\(_2\)O-N cumulative daily flux ranged from 0.021 to 7.33 mg m\(^{-2}\) during 60 days of the study among used treatments with a total loss of 0.53 kg N\(_2\)O-N ha\(^{-1}\). A small N\(_2\)O-N daily flux was observed on day two after the application of treatments in all the experimental units containing urea and urea plus nitrification inhibitors. The highest peak of N\(_2\)O-N daily flux was observed on day four in all the treatments. After day four, this peak declined and reached a low level of N\(_2\)O-N flux in all the treatments on day 60. The honest significant difference (HSD) \((P = 0.05)\) is 0.66, 0.73, 0.80, 0.88, 1.00, 1.24, 0.74, and 0.84 for two, four, 10, 20, 30, 40, 50, and 60 days, respectively. The data showed that the daily N\(_2\)O-N flux ranged between 0.0 to 0.01 mg m\(^{-2}\) day\(^{-1}\) in control was between 0.0 to 7.53 mg m\(^{-2}\) day\(^{-1}\) in uncoated urea (Figure 3). Meanwhile, in coated treatments, the daily N\(_2\)O-N flux ranged between 0.0 to 0.89 mg m\(^{-2}\) day\(^{-1}\) in NOCU1 used @ 500 mg kg\(^{-1}\); in NOCU1, @ 1,000 mg kg\(^{-1}\). The daily N\(_2\)O-N flux ranged between 0.0 to 1.31 mg m\(^{-2}\) day\(^{-1}\).

As for NOCU2 (500 mg kg\(^{-1}\)), it was ranged between 0.0 to 1.08 mg m\(^{-2}\) day\(^{-1}\), and @ 1,000 mg kg\(^{-1}\), the daily N\(_2\)O-N flux ranged between 0.0 to 1.96 mg m\(^{-2}\) day\(^{-1}\). Similarly, in
Figure 3. Daily nitrous oxide flux (mg m⁻² day⁻¹) as affected by the application of neem oil coated urea (NOCU1 and NOCU2), pomegranate leaf extract coated urea (PLECU), and dicyandiamide (DCD) amended urea. Vertical bars indicate the standard error.

DISCUSSION

Ammonia and nitrous oxide emissions characterize agronomic losses due to the low efficiency of N fertilizers contributing to environmental deterioration (Saggar et al., 2013). This signifies the worth of monitoring N emissions from today's managed systems of agriculture (Pan et al., 2016). The use of NIs is a proven technique worldwide for reducing N₂O emissions and enhancing N-use efficiency in agroecosystems (Gilsanz et al., 2016). But their availability, cost, and adaptability by the farmers are big issues linked with their widespread use (Adair and Schwartz, 2008). The investigations of this study revealed that by using some cheap, natural, and locally available materials like NIs, these issues might be addressed for sustainable production of food. Though, a more renowned effect in reducing N₂O emissions was shown by DCD.

The highest daily NH₃ emission on day four after fertilization might be due to immediate intensive hydrolyses of urea in soil. Daily NH₃ emission and flux were high in the treatments where coated urea was applied as compared to uncoated urea throughout the study period (Table 3). It indicated that the
used NIs inhibited the nitrification process and holds the NH$_4$-N for a longer period. This increased NH$_4$-N pool provided the base for more NH$_3$ daily emission and flux than urea alone. The stronger the effect of NIs coated material, the higher the rate of nitrification inhibition, and hence, more pool of NH$_4$-N was available for greater NH$_3$ flux. The prolonged NH$_4^+$ retained in soils treated with NIs increased NH$_3$ emission from soil (Qiao et al., 2016; Raza et al., 2019). Comparatively, less daily NH$_3$-N emission and flux by both the variants of neem oil coated urea (NOCUs) and pomegranate leaf extract coated urea (PLECU) over DCD was due to their extra benefit of retarding urea hydrolysis along with the inhibition of nitrification (Kumar et al., 2007; Kumar et al., 2010; Cantarella et al., 2018).

The significantly less increase in NH$_3$ emission by PLECU (Table 3) was due to its extra benefit of retarding urea hydrolysis (Ismail et al., 2016; Behera et al., 2017). It acted largely as a urease inhibitor (UI) than NI. The urease inhibitors significantly decrease NH$_3$ emission loss. This might be linked to the inhibition of urease enzyme by UIs, which slows down urea hydrolytic breakdown. Several synthetic UIs have been explored to retard urea hydrolysis and for mitigating the N emissions (Pan et al., 2016; Modolo et al., 2018). Slow/controlled fashioned urea generally cuts N loss via the polymerization of urea or through the addition of functional groups to urea (Yamamoto et al., 2016).

The results of the current study showed a maximum percent increase in NH$_3$ cumulative flux over urea by DCD. Moir et al. (2012) and Zhou et al. (2015) reported higher accumulative NH$_3$ emission in the plots where DCD was applied, as compared with urea-only treatment. Nastri et al. (2002), Soares et al. (2012), Recio et al. (2018), and He et al. (2018) reported an increase in NH$_3$ volatilization by the application of DCD, along with urea, over urea alone. In earlier research, Sommer et al. (2004), Soares et al. (2012), Zaman and Nguyen (2012), and Qiao et al. (2016) reported increased NH$_3$ loss through volatilization while using NIs along with urea in the soil.

The results of the current study showed that all the tested NIs were effective in reducing the N$_2$O-N emission to varying extent (Table 3). The natural bacterial nitrification and denitrification process happening in managed intense agricultural and unmanaged soils are major factors toward global emissions of nitrous oxide (Braker and Conard, 2011). During the nitrification process, urea ammonium (NH$_4^+$) is converted initially to nitrite (NO$_2^-$) and then, NO$_3^-$ is formed by Nitrosomonas and Nitrobacter nitrifying bacteria of nitrosamines specie (Leininger et al., 2006). The nitrifiers produce an enzyme called ammonium monoxygenase (AMO) which drives the nitrification. The low N$_2$O-N emission might be due to that the NIs bear a Thiino-S functional group that binds to the copper (Cu) present in the active sites of microbial AMO enzyme while some stop the AMO by disrupting their heterocyclic ring of N (McCarty, 1989; Norton and Ouyang, 2019).

Nimbin, a commercial product prepared from the extract of neem kernels, has been revealed to decrease urea N$_2$O emissions (Datta and Adhya, 2014; Malla et al., 2005). Bronson et al. (1994), Hala et al. (2014), Gupta et al. (2016), and Bordoli et al. (2020) concluded that neem oil can inhibit nitrification rate in soil application and consequently, N$_2$O emission from the soil. Al-Sabahi et al. (2017) concluded that the powder of pomegranate fruit (PFP) had little effect on nitrification and the production of NH$_4$-N and NO$_2$-N + NO$_3$-N was decreased. Stabilized urea amended with PFP reduced ammonia emission and increased N persistence (Kiran and Patra, 2003; Chagas et al., 2016).

The DCD has been investigated for over 80 years for its outstanding nitrification inhibitory properties in agricultural soils (Zhang et al., 2015, Hatano et al., 2019). The outcomes of this experiment agreed with the results of De Klein and Eckardt (2008), and Malla et al. (2005), who reported reductions in direct N$_2$O release from animal urine, livestock slurry, and urea along with DCD in the soil. Less N$_2$O emission from the DCD treatment when compared with normal fertilization was recorded (Zhou et al., 2016; Liu et al., 2017; Fan et al., 2018).

CONCLUSIONS

The DCD was found most effective in reducing N$_2$O-N emission, however, it also increased significantly higher NH$_3$ emissions among all other chemicals. The PLECU represented the least increase in NH$_3$ emission and the least reduction in N$_2$O emission than NOCUs and DCD. Hence, it is suggested that neem oil and pomegranate leaf extract might be encouraged at farmer’s and policymakers’ levels to overcome the environmental damages concerned with the use of the essential element, nitrogen, in the current era of
agriculture. Therefore, the exploration of the nitrification and urease inhibitory potential and scope of some other locally available plant-based natural materials is necessary for future studies for their widespread use by the farmers on the national level. However, the increase in NH$_3$ volatilization using NIs can be further investigated.

ACKNOWLEDGMENTS

We appreciate the Higher Education Commission (HEC) of Pakistan for monetary assistance under Indigenous PhD Fellowships, Batch-V, Phase-II by Personal Identification Number (PIN) 518-81394-2AV5-054 (50042820). Additionally, we sincerely acknowledge Dr. Naveed, Assistant Professor, and Mr. Muhammad Sulman Sadique (PhD Scholar) Soil Microbiology Laboratory, Institute of Soil and Environmental Sciences, University of Faisalabad, Pakistan, for providing logistic support in conducting this study.

REFERENCES

Majumdar D, Pathak H, Kumar S, Jain MC (2002). Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. Agric. Ecosys. Environ. 91: 283-293.

https://doi.org/10.54910/sabrao2021.53.4.

U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook No. 60.

