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SUMMARY 

 
The evaluation of a cultivation technology would be more efficient when the technology assessment is 
based on various approaches like conventional morphological approaches, the use of drone’s 

normalized difference vegetation index (NDVI) imaging, and participatory plant breeding (PPB). The 
recent study aimed to assess the effectiveness of the combination of morphological approaches, drone 

imaging, and participatory plant breeding in selecting the best corn cultivation technology package. 
This research conducted in a randomized complete block design (RCBD) with one factor from March to 
December 2021 at the Village Taroang, Takalar Regency, South Sulawesi, Indonesia. The factor is 40 
cultivation technology packages. The treatments were replicated three times, thus having 120 
experimental units. For plant participation, the investigations were conducted with 56 farmers on their 

corn fields through quantitative surveys in the targeted area. For NDVI, the observation was recorded 
70 days after planting using a DJI Inspire two unmanned aerial vehicles equipped with a multi-spectral 
camera. Based on the results of the study, the combined strategy of different approaches like morpho-
physiological, drone’s NDVI, and participatory plant breeding is found effective in evaluating the corn 
production technology. The yield, plant height, percentage of net yield, and cob weight were good 
selection criteria for the morphology approach in evaluating corn cultivation. The NDVI could be 

recommended in helping the morphology evaluation and PPB, especially in a large-scale evaluation. 
Based on a combined assessment of the different approaches, the maize cultivar Pioneer-27 combined 
with ‘Legowo’ spacing technology, NPK fertilizer ratio of 200:100:50, KNO3 at the rate of 25 kg, and 
application of biofertilizer 'Eco farming' @ 5 cc L-1, was recommended as the best corn production 

technology package in the Village Taroang, Takalar Regency, South Sulawesi, Indonesia. 
 
Keywords: Corn cultivation, NDVI, PPB, morphological approach, multivariate analysis 

 
Key findings: Conventional morpho-physiological, drone NDVI, and participatory plant breeding 
approaches were used in a combined strategy to evaluate the maize production technology. Based on 
this study, this combination was found very effective in determining the best corn production 
technology. The combination of all approaches was formulated in the form of evaluation indices, i.e.,
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morphological index (0.539), NDVI (- 0.553), and PPB (0.635). The morphological index values for 

yield-related traits were, i.e., yield, plant height (0.06), percentage of net yield (0.20), and cobs 
weight (0.47). Based on the evaluation index analysis, maize cultivar Pioneer-27 was recommended 
with ‘Legowo’ spacing technology, NPK fertilizer ratio of 200:100:50, KNO3 @ 25 kg, and biofertilizer 

'Ecofarming' @ 5 cc L-1 as the best corn production technology package, especially in the Village 
Taroang, Takalar District, Takalar Regency, South Sulawesi, Indonesia. 
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INTRODUCTION 

 
The increasing huge world population has 
become a challenge for food security in the 

future. According to Adam (2021), the world 
population will reach 9.7 billion in 2070, which 
indicates that food stability and security will be 
the main issue in many countries (Walker, 

2016). In general, the concept of resilience 
relies more on the sustainable increase in the 
production of major cereals such as corn, 
wheat, and rice. Maize is a food and feed 
commodity, and has an important and vital 
role in maintaining the balance in world food 

security (Bahtiar et al., 2020; Abduh et al., 
2021). Therefore, the increase in corn 
production has been a priority in many 
countries, including Indonesia. 

In Indonesia, plans to increase corn 
production is still considered ineffective, where 

it remains at 3.91% per year, and the 

production rise was relatively due to an 
increase in cultivation area. On the contrary, 
the maize production increase at 0.27% was 
achieved through cultivation technology 
intensification (Ministry of Agriculture, 2018). 
Therefore, it is a clear indication that the corn 
intensification concept needs further effective 

development and improvement. In general, the 
development of production intensification is 
possible through two approaches, namely, 
environmental management and genetic 
engineering (Chozin and Sudjatmiko, 2019; 
Abduh et al., 2021). Simultaneous 

improvement and development of the two 

approaches can be an effective solution to 
increase corn yield in Indonesia. 

Environmental engineering is possible 
and can be used via different plant spacing and 
fertilization levels (Abduh et al., 2021). In 
Indonesia, there are two common types of 

spacing, namely, square spacing and ‘legowo’ 
spacing (Padjung et al., 2020). The ‘legowo’ 
spacing is an innovation to improve the air 
cycle and reduce competition among plants, 
receiving their needed benefits even when 
positioned as a border plant (Portes and Melo, 

2014; Kurt et al., 2017; Alimuddin et al., 

2020). This spacing can increase the potential 
cob size and fill as it gives a trigger to increase 
the maize prolific (Al-Naggar et al., 2017). The 

spacing technology also increases the 
effectiveness of fertilizer applications in corn. 

Fertilization is a major factor in 
providing nutrients for plants (Jjagwe et al., 

2020; Nascimento et al., 2020). There are 
three types of fertilizers, namely, chemical, 
organic, and biofertilizer (Hasnain et al., 2020; 
Abduh et al., 2021). However, among them, 
the biofertilizer has a significant effect to 
improve the biological soil characteristic 

(Nascimento et al., 2020; Gubali and Abdullah, 
2021). Generally, the biofertilizer contains 
bacteria and hormones that can stimulate plant 
growth (Rahimi et al., 2019; Nascimento et al., 
2020). However, the effectiveness of biological 
fertilizer is largely determined by the type of 

bacteria and its accompanying content, as well 

as, the application method (Gubali and 
Abdullah, 2021; Padjung et al., 2021). The 
combination of plant spacing and chemical and 
biological fertilizers is possible and applicable 
through environmental engineering. 

Generally, the genetic engineering of 
corn is to develop open-pollinated and hybrid 

varieties (Kutka, 2011; Fromme et al., 2019). 
Yet, hybrid varieties are mostly used in corn 
cultivation. The hybrid cultivar has a high 
heterosis ability to increase its yield, thus, 
chosen by farmers (Hake and Ross-Ibarra, 
2015; Fadhli et al., 2020). Alternatively, the 

open-pollinated has an advantage in adapting 

to marginal conditions, so this cultivar is the 
potential to develop in suboptimal 
environments (Jaradat et al., 2010; Wolde et 
al., 2018). Based on that, the genetic potential 
is dependent on the existing environment and 
its interaction (Acquaah, 2007). Therefore, the 

combination of genetic factors and cultivation 
technology is important in inducing optimal 
yield in maize. Moreover, the evaluation of the 
combined genetic factors and cultivation 
technology has several observational 
approaches, such as conventional 
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morphological traits, drone technology, and 

social approaches through participatory plant 
breeding. 

The drone technology and participatory 

plant breeding (PPB) have not been optimized 
in evaluating corn cultivation as opposed to 
conventional morphological approaches. 
Drones are smart farming technology used in 
monitoring and predicting crop performance, 
as well as, the need and impact of fertilization 
and pesticides (Ahirwar et al., 2019; 

Khoirunisa and Kurniawati, 2019). Drone 
technology provides analytical information 
related to the crop status through aerial 
imaging, and such evaluation is easier and 
more efficient (Rokhmana, 2015). Meanwhile, 

the core components of PPB include the 

identification of community, crop, and needs of 
local farmers, and the selection of promising 
genotypes based on their performance in the 
farmer's field (Ceccarelli and Grando, 2019; 
Colley et al., 2021). The PPB can help the 
researcher know the farmer's needs. Besides 
that, the PPB concept can increase the farmer's 

adoption of the disseminated technology 
(Morris and Bellon, 2004; Colley et al., 2021, 
2022). This concept is considered more 
effective in the dissemination process of the 
selected lines and their adaptability to 
formulate the best corn production technology 
(Casals et al., 2019; Hairmansis et al., 2019). 

However, the scope of this approach is limited 
and the level of farmer knowledge is also 
limited scientifically. Therefore, the 
combination of morphology, drone, and PPB is 
deemed the most fitting solution for a more 
precise and accurate approach than having a 

single approach. 
Based on that, as the combined 

strategy of morphological approach, drone 
technology, and PPB is considered important in 
assessing the best production technology for 
corn, the latest study aimed to assess the 
effectiveness of these combined strategy for 

the best corn production technology selection. 
 
 

MATERIALS AND METHODS 
 
The recent study was carried out from March to 
December 2021 in the Village Taroang, South 

Galesong District, Takalar Regency, South 
Sulawesi, Indonesia. The study combined plant 
morphology observations with participatory 
plant breeding (PPB). For the PPB concept, the 

study involved several parties such as 

university researchers, local agriculture 
officials, village heads, agricultural extension 
workers, and farmer's groups to evaluate the 

treatment. 
 
Experimental design 
 
The recent study focused on forming a 
selection model through an index so that the 
role of combination is prioritized over the 

influence of a single factor among cultivar or 
production technology. Based on that, the 
research set up randomized complete block 
design (RCBD) with one factor. The factor is 
the combination of five corn varieties and eight 

cultivation technology packages, hence, 40 

combination levels. The treatments were 
replicated three times, for a total of 120 
experimental units. Table 1 shows the detail of 
the combinations. Each experimental unit had 
a plot size of 5 m × 5 m. The RCBD formula is 
shown below: 
 

 
 
where  
Yij = the jth observation of the ith treatment, 

 μ = the population mean, 
τi = the treatment effect of the ith treatment, 
β j = the rep effect of the jth, replicate, and 

εij = the random error. 
 
Evaluation based on morpho-physiological 
characters 

 
Observations for morphological data based on 
plant growth and production traits were 
performed following the guidelines for corn 
cultivation (Abduh et al., 2021; Padjung et al., 
2021). The component traits were plant height, 
stem diameter, cob height off ground, number 

of leaves, male and female flowering age, 
anthesis-silking interval, cob diameter, cob 
length, seed rows per cob, closure of cob, and 
cob weight. As for the physiological 

characteristics, these are absorption, 
reflection, transmission, leaf SPAD, green 

value, chlorophyll a and b, total chlorophyll, 
and the number of stomata. The types of 
equipment used in the observations were a 
miniature leaf spectrometer CI-710 type 
(absorption, reflection, and transmission), and 
a microscope.  
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Table 1. Treatment details of cultivars and cultivation packages. 

Cultivar 
Detail 
treatment 

Cultivation 
package 

Detail treatment 

V1 NASA-29 P1 square spacing of 75 cm × 20 cm with NPK fertilizer ratio of 
225:100:75 (P1) 

V2 JH-37 P2 square spacing of 75 cm × 20 cm, with NPK fertilizer ratio of 
200:100:50, plus 25 kg of KNO3, and biofertilizer 'Biotany' 
application @ 5 cc L-1  

V3 Bisi-2 P3 ‘Legowo’ spacing (50 + 100) × 20 cm, with NPK fertilizer 
ratio of 225:100:75  

V4 Bisi-18 P4 ‘Legowo’ spacing (50 + 100) × 20 cm, with NPK fertilizer 
ratio of 200:100:50, plus 25 kg of KNO3, and biofertilizer 
'Biotany' application @ 5 cc L-1  

V5 Sinhas-1 P5 ‘Legowo’ spacing (50 + 100) × 20 cm, with NPK fertilizer 
ratio of 200:100:50, plus 25 kg of KNO3, and biofertilizer 

'Ecofarming' application @ 5 cc L-1 (P5).  
V6 NK-7328    
V7 Pioneer-27    
V8 ADV-JOSS     

 

Evaluation based on drone’s aerial 
imaging 
 
The data were recorded 70 days after planting 
using a DJI Inspire 2 unmanned aerial vehicles 
(UAV) equipped with a multi-spectral camera. 

The captured aerial photo data was processed 
using the agisoft metashape application to 
obtain normalized difference vegetation index 
(NDVI) data of the corns. NDVI is an algorithm 

that uses near-infrared light (NIR) and red 
visible light I to determine the pattern of plant 
development in terms of plant density and 

health (NDVI = [NIR – R]/[NIR + R]). NDVI 
ranges from -1 to 1 where the closer the value 
to unity (1) the healthier the plants by having 
a higher density. On the contrary, when the 
value is closer to -1 the plant is suspected to 
be unhealthy or even dead. The NDVI value in 
this article focuses on comparing growth and 

the yield in each combination of different 
treatments in corn production technology. 
 
Observation of participatory plant 
breeding 

 

The concept of participatory plant breeding was 
emphasized in farmers' assessment of corn 
plantations through quantitative surveys. The 
farmers’ participation in this study referred to 
the fourth type by Morris and Bellon (2004), 
where farmers evaluate finished corn 
cultivation on station or in scientists’ managed 

on-farm trials, and help select corn cultivation 
to distribute. There were 56 farmers involved 
in this survey. The survey was conducted 
during the generative stage by observing each 

plot. Each farmer marked the five most 
preferred plots without ranking. All the marks 
were counted and then, presented as 
participatory plant breeding qualitative data. 
 
Data analysis 

 
The morpho-physiological data were 
systematically analyzed through analysis of 
variance (ANOVA), factor analysis, and path 

analysis (Farid et al., 2020). The results of the 
paths become the basis for the formation of a 
morpho-physiological index. Drone aerial data 

presented in the NDVI, along with other data 
(morphological index analysis and participatory 
plant breeding) were standardized before being 
combined (Peternelli et al., 2017). The whole 
approach was analyzed by principal component 
analysis (PCA). The results of the eigenvectors 
in the PCA were used as an evaluation index of 

the corn cultivation technology packages. 
Overall, the data were analyzed using several 
softwares including STAR 2.0.1, MS Excel 
2016, and Minitab version 17 (Anshori et al., 
2019, 2021). 

 

 
RESULTS 
 
The analysis of variance revealed that almost 
all the morphological characters were 
significantly affected by the different corn 
cultivation technology packages (Tables 2 and 

3). However, in the case of physiological 
characters, the number of stomata was the 
only character that was significantly affected 
by the corn cultivation technology packages.  
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Table 2. Analysis of variance of morphological characters. 

SV 
Pr(>F) 

PH SD CH NL MFA FFA ASI CD CL 

Package 0 0.168 0.202 0.001 0.000 0.000 0.000 0.000 0.000 

CV 5.56 14.49 10.73 6.86 1.33 1.24 19.52 3.35 2.89 

SV 
Pr(>F) 

SRC CC Prolifik PNY 1000-GW CW The yield - -  

Package 0 0.008 0.000 0.003 0.000 0.000 0.000 - - 
CV 4.17 33.01 18.47 4.45 4.6 9.8 8.31 - -  

Note: SV = source of variance; CV= coefficient of variance, PH = plant height, SD= stem diameter, CH = cob’s 
height, NL = number of leaves, MFA =male flowering age, FFA = female flowering age, ASI = anthesis-silking 
interval, CD = cob’s diameter, CL = cob’s length, SRC = seed rows per cob, CC = closure of cobs, PNY = 
percentage of net yield, 1000-GW = 1000-grain weight, CW = cobs weight. 

 

 

Table 3. Analysis of variance of physiological characters. 

SV 

Pr(>F) 

Leaf 

absorption 

Leaf 

reflection 

Leaf 

transmission 

Green 

value 
Chl.a Chl.b Chl.Tot NS 

Package 0.70 0.96 0.08 0.17 0.56 0.58 0.56 0.0** 
CV 24.99 15.21 14.14 3.85 10.17 14.17 4.56 12.78 

Note: SV = source of variance; CV = coefficient of variance, Chl = Chlorophyll, NS = number of stomata 

 

The morphological and physiological 
characteristics, which have a significant impact 
on different production technology packages, 
were further combined for advanced analysis 
through factor analysis. 

The factor analysis results are given in 

Table 4. The diversity of factor one was 
strongly influenced by the prolific character 
(0.301). However, the diversity of factor two 
was influenced by the diversity of plant height 
(-0.319), cobs weight (-0.315), and yield (-
0.367). The diversity of factor three was 
influenced by the cultivar yield (-0.487) and 

1000-seed weight (0.311). The diversity of 
factor four was determined by the diversity of 
the number of leaves (-0.463) and anthesis-
silking interval (0.567). The diversity of factor 
five was determined by the number of stomata 
(-0.683) and the cob’s length (-0.486). 
However, the diversity of factor six was 

prejudiced by the closure of the cob (0.888). 

Based on these results, all the characteristics 
that affect the various dimensions of the 
factors can be continued in the next path 
analysis. 

Before path analysis, all the selected 

characters in factor analysis were correlated to 
yield. Based on the results of the Pearson 
correlation to yield (Table 5), the characters. 
i.e., plant height, cob weight, percentage of 
net yield, and 1000-seed weight were found 
significantly correlated with the yield. 

Therefore, these characters were brought 
further for path analysis. 

The path analysis results are shown in 
Table 6. The analysis produced a determination 
with a total diversity value 52.55%. Based on 
the direct effects, the traits, cob weight, 

percentage of net yield, and plant height, had 
a direct positive effect of 0.89, 0.39, and 0.11, 
respectively. However, the 1000-seed weight 
had a direct negative effect of -0.23. 
Therefore, the trait, 1000-seed weight, was not 
continued in the index formation. Three 
characters that have a direct positive effect on 

yield were used as selection characters along 
with yield in forming a morphological index.  

The results of the PCA analysis of the 
three observational approaches are shown in 
Table 7 where PC1 was found as best with an 
eigenvalue of 1.72. However, the PC2 and PC3 
had eigenvalues of 0.7665 and 0.51, 

respectively. Based on PC1, the morphological 

index (0.539) had eigenvectors in the same 
direction as participatory plant breeding 
(0.635). But, the drone’s NDVI had a negative 
eigenvector value (-0.553). 

The results of the evaluation index are 

shown in Table 8. Eighteen treatments had a 
positive evaluation index. Cultivars V7 
(Pioneer-27), V8 (ADV-JOSS), and V6 (NK-
7328) showed the most positive evaluation 
index values. Meanwhile, P5V7 (package five 
with cultivar Pioneer-27) (2.90) was the best 
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Table 4. Factor analysis to significant characters based on analysis of variance. 

Variables Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 

PH 0.034 -0.319 -0.137 -0.242 0.175 -0.043 
NL 0.009 -0.029 0.125 -0.463 0.003 -0.038 
NS -0.136 0.053 -0.152 -0.049 -0.683 -0.181 
MFA 0.237 -0.016 0.211 0.109 -0.090 -0.016 
FFA 0.198 -0.017 0.175 -0.012 -0.145 -0.008 
ASI 0.132 -0.033 0.088 0.567 0.158 0.036 

CD -0.192 -0.054 0.147 0.022 -0.137 -0.104 
CL -0.020 -0.049 0.066 -0.078 -0.486 0.183 
SRC -0.275 0.004 0.046 -0.049 -0.176 0.026 
CC -0.047 -0.022 -0.038 0.051 0.038 0.888 
Prolific 0.301 -0.103 -0.167 0.053 0.218 -0.154 
PNY -0.062 -0.111 -0.487 0.000 -0.157 0.138 
Yield 0.063 -0.367 -0.223 0.110 0.046 0.035 

1000-GW -0.050 -0.169 0.311 -0.007 -0.116 0.185 
CW 0.039 -0.315 0.100 0.055 -0.057 -0.040 

Note: PH = plant height, NL = Number of leaves, NS = number of stomata, MFA =male flowering age, FFA = 
female flowering age, ASI = anthesis-silking interval, CD = cob’s diameter, CL = cob’s length, SRC = seed rows per 
cob, CC = closure of cobs, PNY = percentage of net yield, 1000-GW = 1000-grain weight, CW = cobs weight 

 
 
Table 5. Pearson correlation analysis to selected characters from factor analysis. 

Variables PH NL NS ASI CL CC Prolific PNY Yield 1000-GW 

NL 0.26          
NS -0.09 -0.22         
ASI -0.21 -0.50** 0.01        
CL -0.14 0.23 0.22 -0.08       

CC -0.03 0.04 -0.04 -0.12 0.15      
Prolific 0.05 0.17 0.20 -0.14 0.37* 0.05     

PNY -0.01 -0.09 0.26 -0.02 0.07 0.08 0.18    
Yield 0.54** -0.17 -0.04 0.23 0.09 -0.13 0.05 0.32*   
1000-GW 0.34* 0.10 -0.18 0.17 -0.03 -0.01 -0.37* -0.29 0.31*  
CW 0.57** -0.09 -0.08 0.23 0.11 -0.21 -0.11 -0.15 0.74** 0.69** 

Note: PH = plant height, NL = number of leaves, NS = number of stomata, ASI = anthesis-silking interval, CL = 
cob’s length, CC = closure of cobs, PNY = percentage of net yield, 1000-GW = 1000-grain weight, CW = cobs 
weight 

 
 
Table 6. Path analysis based on the significant correlation to the yield. 

Characters 
Direct 

Effect 

Indirect Effect 
Residual 

PH PNY 1000-GW CW 

PH 0.11  0.00 -0.08 0.51 0.23 
PNY 0.39 0.00  0.07 -0.13 0.23 
1000-GW -0.23 0.04 -0.11t  0.62 0.23 

CW 0.89 0.06 -0.06 -0.16  0.23 

Notes: R2= 52.55% (0.5255), PH = plant height, PNY = percentage of net yield, 1000-GW = 1000-grain weight, 
CW = cobs weight 
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Table 7. Principal component analysis of the three observational approaches. 

Characters PC1 PC2 PC3 

Morpho 0.539 -0.733 -0.416 
NDVI -0.553 -0.680 0.481 
PPB 0.635 0.029 0.772 

Proportion of Variance 0.575 0.256 0.170 
Cumulative Proportion 0.575 0.830 1.000 

EigenValues 1.724 0.767 0.510 

Note: NDVI = normalized difference vegetation index, PPB = participatory plant breeding 

 
 
Table 8. Standardization value and evaluation index of corn cultivation technology package. 

Combination Morpho NDVI Sum_PPB PPB (%) Morpho NDVI_z PPB_z Evaluation index 

P5V7 1.79 0.70 17 6.07 1.79 -1.23 1.98 2.90 
P2V7 1.92 0.71 13 4.64 1.92 -1.09 1.18 2.39 

P1V7 2.25 0.65 7 2.50 2.25 -1.96 -0.01 2.29 

P4V7 0.80 0.73 18 6.43 0.80 -0.79 2.18 2.25 
P3V8 1.89 0.76 15 5.36 1.89 -0.36 1.58 2.22 
P3V7 1.98 0.74 13 4.64 1.98 -0.65 1.18 2.18 
P2V8 1.10 0.73 15 5.36 1.10 -0.79 1.58 2.04 
P3V6 0.31 0.60 9 3.21 0.31 -2.69 0.39 1.90 
P4V8 2.43 0.83 14 5.00 2.43 0.66 1.38 1.82 

P5V8 1.94 0.81 12 4.29 1.94 0.37 0.99 1.47 
P1V6 -0.68 0.71 12 4.29 -0.68 -1.09 0.99 0.86 
P4V6 -1.38 0.70 14 5.00 -1.38 -1.23 1.38 0.82 
P5V6 -0.55 0.73 12 4.29 -0.55 -0.79 0.99 0.77 
P2V6 -1.04 0.71 11 3.93 -1.04 -1.09 0.79 0.54 
P1V3 1.22 0.80 7 2.5 1.22 0.23 -0.01 0.53 
P3V3 1.62 0.81 4 1.43 1.62 0.37 -0.61 0.28 

P4V4 1.39 0.81 5 1.79 1.39 0.37 -0.41 0.28 

P1V8 1.49 0.76 0 0.00 1.49 -0.36 -1.40 0.11 

P5V2 0.29 0.74 2 0.71 0.29 -0.65 -1.01 -0.12 
P3V1 0.25 0.75 2 0.71 0.25 -0.50 -1.01 -0.23 
P3V2 -0.30 0.78 6 2.14 -0.30 -0.07 -0.21 -0.26 
P1V1 0.00 0.76 2 0.71 0.00 -0.36 -1.01 -0.44 

P2V1 0.49 0.81 3 1.07 0.49 0.37 -0.81 -0.46 
P2V2 -0.99 0.76 6 2.14 -0.99 -0.36 -0.21 -0.47 
P1V4 -0.04 0.89 9 3.21 -0.04 1.54 0.39 -0.63 
P4V3 0.20 0.89 5 1.79 0.20 1.54 -0.41 -1.00 
P2V3 -0.25 0.89 6 2.14 -0.25 1.54 -0.21 -1.12 
P3V4 -0.10 0.87 4 1.43 -0.10 1.25 -0.61 -1.13 

P5V1 -0.53 0.81 2 0.71 -0.53 0.37 -1.01 -1.13 
P5V3 0.33 0.89 3 1.07 0.33 1.54 -0.81 -1.18 
P4V1 -0.62 0.80 1 0.36 -0.62 0.23 -1.20 -1.22 
P4V2 -2.23 0.79 6 2.14 -2.23 0.08 -0.21 -1.38 

P1V2 -2.08 0.79 5 1.79 -2.08 0.08 -0.41 -1.43 
P5V4 -0.07 0.86 0 0.00 -0.07 1.10 -1.40 -1.54 
P2V5 -1.07 0.86 4 1.43 -1.07 1.10 -0.61 -1.57 

P3V5 -1.83 0.80 3 1.07 -1.83 0.23 -0.81 -1.62 
P2V4 -1.37 0.89 6 2.14 -1.37 1.54 -0.21 -1.72 
P4V5 -2.99 0.78 3 1.07 -2.99 -0.07 -0.81 -2.08 
P1V5 -2.35 0.87 6 2.14 -2.35 1.25 -0.21 -2.09 
P5V5 -3.24 0.81 0 0.00 -3.24 0.37 -1.40 -2.85 

Note: z = standardization 
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treatment combination among all other 

treatments. Inversely, the P5V5 (package five 
with cultivar Sinhas-1) treatment was the 
lowest treatment in this experiment. 

 
 
DISCUSSION 
 
The morpho-physiological approach is more 
complex than the drone’s NDVI and 
participatory plant breeding. This approach 

summarizes in detail all the important 
characteristics of plants in supporting their 
yield potential. It also becomes essential since 
an assessment based solely on the yield will 
confer a high error (Araya-Alman et al., 2019; 

Laraswati et al., 2021; Zafar et al., 2021). 

Grain yield is a quantitative and polygenic 
character which cannot be separated from 
environmental influences and interactions 
(Kassahun et al., 2013; Fellahi et al., 2018; 
Farid et al., 2020). Anshori et al. (2021) 
mentioned that the assessment of a crop yield 
potential should include secondary characters, 

especially if the evaluation is carried out only 
at one location (environment). Therefore, the 
morpho-physiological characters were analyzed 
systematically and advanced by focusing on 
the yield as the basis for assessing secondary 
characters in selection. Yet, based on the 
analysis of variance in this study, the 

combination of different technology packages 
had more influence on morphological 
characters than physiological characters. So, 
further analysis was focused on morphological 
characters.  
 Factor analysis and path analysis are 

multivariate analyses that are useful to detect 
the secondary character or the supporting yield 
characters (Farid et al. 2020; Arifuddin et al. 
2021). The factor analysis plays an important 
role in identifying large internal covariance 
between the characters in a dimension of 
variance (Dormann et al., 2013; Momen et al., 

2020). It becomes important to predict the 
main characters that affect the total variance, 
hence, this step can reduce the less optimal 

characters in selection (Filipović et al., 2014; 
Rocha et al., 2018; Arifuddin et al., 2021). 
Several studies have reported the effectiveness 
of this analysis in determining the selection 

criterion (Rocha et al., 2018; Arifuddin et al., 
2021; Kahveci and Acar, 2021). In the latest 
study, the determination of the important 
characters in each factor dimension was 
identified by the loading factor value which 
reaches 0.3. Although, according to Yong and 

Pearce (2013) and Farid et al. (2020), the 
determination was based on principal 

component analysis when the loading factor 

was more than or equal to 0.32. However, the 
value of 0.3 was considered representative to 
distinguish the determinants of variance and 

characters that do not have high covariance. 
Based on factor analysis, there were six 
optimal dimensions and 11 characters that 
have a significant diversity of these six 
dimensions. Therefore, the 11 characters were 
analyzed further on the yielding character as 
the main variable. One other possible analysis 

for this purpose is path analysis.  
Path analysis is a development of 

correlation and multiple regression analysis 
(Streiner, 2005; Singh and Chaudhary, 2007; 
Du et al., 2021). Path analysis was performed 

by partitioning a correlation value into direct 

and indirect effects. This direct effect becomes 
the main indicator of a character in influencing 
the total variance of its main characters 
(Olivoto et al., 2017; Anshori et al., 2021). 
However, path analysis with many variables is 
considered less effective, so it needs to be 
reduced by correlation analysis. The characters 

with significant correlation to the yield were 
progressed to path analysis. This step will 
minimize bias in predicting or projecting 
supporting characters that directly affect the 
yield (Alsabah et al., 2019; Akbar et al., 2021; 
Karima et al., 2021). The same concept was 
also reported by Farid et al. (2020, 2021a) in 

wheat, Anshori et al. (2019, 2021) in rice, 
Fadhli et al. (2020), and Padjung et al. (2021) 
in maize crop. Based on the correlation 
analysis, plant height, cob weight, percentage 
of net yield, and 1000-seed weight were found 
significantly correlated with yield. The positive 

correlation of yield with plant height and 1000-
seed weight was also reported by Munawar et 
al. (2013) and Padjung et al. (2021), with cob 
weight by Fadhli et al. (2020), and 1000-seed 
weight by Agbaje et al. (2000). Therefore, the 
four morphological characters have proceeded 
in the path analysis. 

Based on the path analysis, the traits 
of plant height, percentage of net yield, and 
cob weight became the supporting characters 

for yield. The positive direct effect of these 
traits has also been reported by Crevelari et al. 
(2018) and Abduh et al. (2021) for plant 
height, and Fadhli et al. (2020) for cob weight. 

These three supporting characters can be 
combined and formulated into a selection 
index. The selection index is a selection 
method for multiple characters using multiple 
regression formulation accompanied by 
weighting characters (Acquaah, 2007; Singh 

and Chaudhary, 2007; Islam et al., 2016). The 
regression values were ranked as the basis of 
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the selection process. The use of this concept 

has also been reported by Anshori et al. 
(2019), Akbar et al. (2021), Farid et al. 
(2021a), and Karima et al. (2021). The 

formation of this index was highly dependent 
on the weighting character's values (Anshori et 
al., 2021). According to Sabouri et al. (2008), 
and Alsabah et al. (2019), the direct effect of 
path analysis is a practical basis for the 
formation of a selection index. Yet, the use of 
this direct effect also needs to be corrected 

with the determination of the path analysis. As 
a result, the formed selection index is: 

 
Morphological index = Yield + (0.11× 0.5255) 
plant height + (0.39 × 0.5255) Percentage of 

Net Yield + (0.89 × 0.5255) cobs weight 

 
Morphological index = Yield + 0.06 (plant 

height) + 0.20 {Percentage of Net Yield) + 
0.47 (cobs weight) 

 
The morphological selection index was 

then combined with the results of the analysis 

of standardized NDVI and participatory plant 
breeding (PPB). This concept can also detect 
the variance direction of NDVI and PPB toward 
morphological traits. The combination of three 
approaches must be standardized to equalize 
the variance among the approaches. This 
standardization concept has also been used 

and reported in past studies on sugarcane 
(Peternelli et al., 2017) and rice (Anshori et al., 
2021). For the morphological approach, it has 
been standardized independently among 
selection characters, so it does not need to be 
standardized again (Anshori et al., 2019; Farid 

et al., 2021a, b). The combination of these 
three approaches also took the concept of the 
index value. Yet, the weighting used principal 
component analysis (PCA). PCA can provide 
information on the pattern of diversity of a 
particular variable against other variables in a 
certain dimension (Jolliffe and Cadima, 2016; 

Zafar et al., 2021). PC1 was the dimension 
with the highest diversity (Evgenidis et al., 
2011; Jolliffe and Cadima, 2016; Farid et al., 

2021a, b), Therefore, this PC is an indicator in 
seeing the diversity between the three 
variables. Based on PCA analysis, the 
formulation of the evaluation index of the three 

approaches was: 
 

Evaluation index = 0.539 (morphological 
index) - 0.553 (NDVI) + 0.635 (PPB) 

 
The results of the evaluation index 

showed that the morphological index had the 
same direction as the PPB. However, the NDVI 

has a negative value compared to the other 

two approaches. It is an indication that the 
high NDVI value of corn cannot be a general 
basis for increasing yield. However, it did not 

also indicate a very low NDVI value which 
means a very high yield because the NDVI 
value has been standardized. Wahab et al. 
(2018) also concluded the low yield correlation 
(0.393) with maize NDVI. However, according 
to Herrmann et al. (2020), the use of super 
spectral cameras can increase the correlation 

of NDVI to the yield (0.69). The use of this 
type of camera, therefore, can increase the 
chances of NDVI accuracy. In the latest study, 
the optimal NDVI value was in the range of 0.7 
to 0.8. According to Zaman-Allah et al. (2015), 

the optimal NDVI range was from 0.4 to 0.6 as 

per the nitrogen stress test. According to 
Zhang et al. (2019), the optimal NDVI was in 
the range of 0.8 which also confirms the 
previous statement. The lush leaf stands will 
reduce the effectiveness of photosynthesis 
since shaded leaves have a low photosynthetic 
process. Similarly, this had relatively the same 

energy and enzyme consumption as the un-
shaded leaves which decreased the net 
photosynthate. Therefore, for the study, the 
NDVI range was applicable as a reference in 
the use of NDVI for corn.  

NDVI in the latest study is potential to 
use in participatory plant breeding concept and 

morphology evaluation. The NDVI eigenvector 
is not relatively very different from the 
morphological index and PPB. It indicates that 
the use of NDVI could increase the 
effectiveness of evaluation through cultivation 
on a large scale. Several studies have 

effectively reported the use of NDVI drones to 
evaluate corn cultivation in a wide area (Hall et 
al., 2018; Tirado et al., 2020; Burns et al., 
2021). Besides that, this approach can give a 
correction to the result of human measurement 
to plant growth traits and yield (Panday et al. 
2020; Tirado et al., 2020; Castro et al., 2021), 

so that the evaluation by researchers and 
farmers could be corrected to select the best 
lines or cultivation technology. Hence, the 

NDVI could be recommended in helping the 
morphology evaluation and PPB. 

The latest study revealed that the 
farmers were able to identify the potential of a 

corn production technology. It was indicated by 
the diversity of eigenvectors in PCA analysis, 
where the eigenvector value of PPB had a 
value that was in the same direction and 
greater than the morphological index. The 
success of the PPB concept was also reported 

by Casals et al. (2019), where farmer's 
assessments had a high correlation with 



Farid et al. (2022) 

 

276 

morphological observations. According to 

Ceccarelli and Grando (2019) and Colley et al. 
(2021, 2022), the effectiveness of PPB occurs 
when farmers understand the characteristics of 

plants that produce significantly high yield. 
Therefore, based on these findings the PPB 
model was effective to be practiced in the 
process of evaluating the potential for corn 
cultivation technology packages in the Village 
Taroang, Takalar Regency, South Sulawesi, 
Indonesia. In addition, the PPB data were also 

found effective in combination with other 
approaches. The evaluation index results also 
showed that cultivars six (NK-7328), seven 
(Pioneer-27), and eight (ADV-JOSS) were 
found more dominant than the selected 

technology package. It means that the 

influence of cultivars was more dominant than 
the cultivation technology. However, the use of 
‘legowo’ spacing can increase the potential of 
these cultivars to be more optimal (P3, P4, and 
P5). The addition of KNO3 fertilizer and 
biological fertilizer was relatively specific for 
certain corn cultivars, including P5V7, which 

was identified as the best cultivation 
technology package. Based on the results, the 
P5V7, P3V8, and P3V6 were recommended for 
corn cultivation in the Village Taroang, Takalar 
Regency, South Sulawesi, Indonesia, and other 
areas with considerable similarities. 

Based on this study, the morphological 

index, drone’s NDVI, and PPB are very helpful 
to use. All approaches relatively have great 
eigenvector value, and they can be used 
independently. However, each approach has 
advantages and disadvantages in evaluating 
corn cultivation, and their combination can 

cover the disadvantages of each approach. 
Therefore, the evaluation of corn cultivation 
should include the NDVI and PPB approaches 
to help the morphology or agronomy approach. 
 
 
CONCLUSIONS 

 
The combination of morphological approaches, 
drone imaging, and participatory plant 

breeding is effective in selecting the best corn 
production technology. The yield, plant height, 
percentage of net yield, and cob weight are the 
good selection criteria of the morphology 

approach in evaluating corn cultivation. The 
NDVI could be recommended in helping the 
morphology evaluation and PPB, especially in a 
large-scale evaluation. The combination of the 
three approaches was formulated in the form 
of an evaluation index, namely, evaluation 

index = 0.539 (morphological index) - 0.553 
(NDVI), and 0.635 (PPB). The evaluation index 

analysis recommended maize cultivar Pioneer-

27 with ‘legowo’ spacing technology, NPK 
fertilizer ratio of 200:100:50, plus KNO3 @ 25 
kg, and 'biofertilizer' Ecofarming @ 5 cc L-1, 

and found this as the best corn cultivation 
technology package, especially in the Village 
Taroang, Takalar District, Takalar Regency, 
South Sulawesi, Indonesia. 
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