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SUMMARY 

 

Among various abiotic stresses affecting the crop production, drought is the most 

serious constraint for global agriculture as it affects more than 75% of the world’s 

land area. It exerts many-fold effects at whole plant level in rapeseed and mustard. 

Its effects on plant phenology, growth and development, physiological processes, 

source–sink relations and plant reproduction processes depend on the severity of 
drought. An understanding of the various physiological traits controlling/ regulating 

crop responses to drought is required to develop drought resistant varieties of 

rapeseed and mustard. In this review, we have attempted to amass scattered 

information at one platform, and suggested as to how these can be integrated 

towards the ultimate aim of developing drought tolerant varieties in oilseed 

Brassica. 
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Key findings: An integrated approach combining advances of plant physiology and 

molecular genetics and biology is required to increase the precision and efficiency of 
breeding program for drought tolerance in oilseed Brassica. 
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INTRODUCTION 

 

Plants growth under field conditions 
are subjected to various 

environmental stresses, such as high 

or low temperature, drought and 

salinity. At any given point of time, 

plants may face two or more stresses 
(e.g. drought and salinity). Among 

these stresses, drought is the most 
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serious problem for global agriculture, 

affecting 75% of the world’s land area 

(Ratna Reddy and Syme, 
2015).  Drought is an extended 

abnormal dry period that occurs in a 

region consistently receiving a below-

average rainfall.  Out of 1474 million 

hectares (ha) of cultivated land in the 

world, 86% comes under rain-fed 
cultivation (Kumar, 2005). The genus 

Brassica comprises some 100 species 

such as rapeseed (Brassica napus L.), 

Indian mustard (Brassica juncea L.), 

cabbage (Brassica oleracea L.) and 

turnip rape (Brassica rapa L.) that are 
mainly grown for oil, condiments, 

vegetables or fodder (Hosaini et al., 

2009). Rapeseed accounts for most of 

the oilseed production in Europe and 

North America, whereas Indian 

mustard is mainly grown in India and 

North Africa. The annual production of 
rapeseed is more than 60 million tons 

(http://faostat.fao.org, 2011). 

However, drought greatly affects its 

growth and seed yield. This situation 

can be alleviated by an approach 

combining water storage and 
irrigation, crop management and plant 

breeding. There has been great 

interest in breeding stress-tolerant 

varieties, since significant inter- and 

intra specific variation for drought 

tolerance exist within Brassica species, 

which needs to be exploited through 
selection and breeding. Literature 

abounds in physiological traits related 

to drought tolerance and breeding 

strategies for drought tolerant 

Brassica genotypes. This review 

highlights the recent advances in 
physiological mechanisms and 

parameters and underlying genetical 

processes imparting 

resistance/tolerance to drought stress 

in Brassica crops. We have also 

attempted to integrate molecular, 
physiological and metabolic aspects to 

bring about heritable improvement to 

help them withstand limited moisture 

condition. 
 

Physiological traits: response to 

drought  

 

Drought at the whole plant level 

brings about many fold changes on 
plant phenology, growth and 

development, source–sink relations 

and plant reproduction processes. An 

understanding of the various 

physiological traits controlling/ 

regulating crop responses to drought 
is required for identifying natural 

genetic variation for drought 

tolerance. These traits can be broadly 

classified as shoot and root-related 

traits.  

 

Germination, seedling growth and 
establishment 

 

Drought can be responsible for the 

inhibition or delayed seed 

germination, poor seedling growth and 

establishment. Brassica seeds did not 
germinate up to -13 bars (Channaoui 

et al., 2017).  The relative vigor index 

of seedlings varied between 0.32 ~ 

0.79, with an average of 0.49. 

Drought stress significantly affected 

seedling height, fresh weight and 

survival rate. Compared with water 
control, 10% PEG-6000 treatment on 

an average reduced seedling height by 

40.68%, fresh weight by 34.2% and 

survival rate by 18% (Chun-jie el al., 

2007). Reduction in germination 

components by osmotic stress could 
be attributed to lower infusibility of 

water through the seed coat and low 

initial water uptake by the seed under 

stress condition (Bahrami et al., 2012) 

and decreased external water 

potential. Decrease of seed 
germination under water stress 

http://faostat.fao.org/
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condition could also be due to 

metabolic disorders such as slow 

hydrolysis of storage compounds in 
endosperm or cotyledons and/or 

slower transportation of hydrolyzed 

material to developing embryo axis 

(Ayaz et al., 2000). The germination 

process involves two steps, firstly 

enzymatic hydrolysis of stored 
material, and secondly the building of 

new tissue. Under moisture deficit 

condition, enzymatic activity slows 

down and consequently the 

germination percentage decreases 

under the more negative osmotic 
potential. As osmotic potential 

declines, water absorption decreases 

and as a result, turgidity and cell 

division decrease and finally, radicle 

growth and germination get reduced 

(Zaefizadeh et al., 2011).  

According to Ayaz et al. (2000), 
inhibition of seed germination under 

water deficit condition may be due to 

the change in metabolic pathways like 

slower hydrolysis of storage 

compounds in endosperm or 

cotyledons and/ or slower 
transportation of hydrolyzed material 

to developing embryo axis. Moreover, 

with the decrease in osmotic potential, 

water absorption also decreases 

resulting in reduced cell turgidity and 

division; all these finally lead to 

substantial decrease in root length, 
shoot length and germination 

percentage (Zaefizadeh et al., 2011).  

 

Phenology  

 

Plant developmental traits such as 
early vigour or phenology may be 

particularly significant under water‐
limited condition (Cairns et al., 2009). 

Faster phenological development is 
particularly useful in situations where 

late season drought is imminent. 

Compared to small seeds, large seeds 

improved shoot dry weight, biomass 

and seed yield by 13–43, 25–57 and 

12 per cents, respectively. Results 
indicated that seedlings from medium 

and large seeds were more vigorous 

and tolerant to flea beetle damage 

than seedlings from small seeds. 

Tolerance was due to a higher initial 

seedling weight rather than higher 
relative growth rate. Shoot dry 

weight, biomass and yield of the three 

cultivars were more strongly 

correlated with 1000-seed weight than 

with seed diameter (Elliott et al., 

2007). 
 

Root architecture 

 

An increased depth and density of 

roots is considered a major 

mechanism for improving water 

uptake under drought conditions 
(Turner, 1986). The roots interestingly 

show a very different (but very logical, 

from a survival standpoint) response. 

Root growth is often accelerated by at 

least moderate drought stresses 

(perhaps by the action of ABA also) 
which results in increase in root depth 

and decrease in root volume. It is 

obvious where obtaining water is a 

problem; perhaps more can be 

obtained by sending out roots to 

explore a greater soil volume.  

Extensive information is 
available on the value of root traits in 

relation to drought avoidance in crops 

(Kashiwagi et al., 2015). Osmotic 

adjustment is reported to promote 

root growth in B. juncea (Kumar and 

Singh, 1998). On an average, root 
zone depth was 118.2 cm in B. juncea 

and 109 cm in B. napus. Deeper root 

depth in B. juncea might have led to 

higher soil moisture extraction from 

deeper layers than that in B. napus. 

Increased water use in Indian mustard 
improved plant water status, leaf 
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water potential (LWP), relative water 

content (RWC) and photosynthetic 

activity. Root zone depth was 
positively correlated to the number of 

primary and secondary branches and 

number of silique per plant in B. 

juncea, while no such association was 

found in B. napus. Under drought, 

positive correlation was found 
between yield per plant and seedling 

root traits viz., root length, fresh and 

dry root weight (Cheema et al., 2004). 

Association with seedling root traits 

under drought appeared to be more 

important than seedling shoot traits; 
this reflects roots as relatively 

powerful sink. Well-developed deep 

root system will have higher potential 

to absorb water and minerals and 

transport water to the growing shoots. 

This might be the reason for strong 

association of yield per plant with 
seedling root traits. Therefore, 

selection under drought should be 

based on root traits rather than shoot 

characters.  

 

Plant water relation and osmotic 
adjustment (OA) 

 

It is generally agreed that water stress 

brings about osmotic dehydration of 

the plant tissue, resulting in altered 

plant water relations. In rapeseed, 

reduced relative water contents, 
osmotic potential and potassium 

contents as well as increased total 

greenness and proline contents were 

observed under various levels of water 

stresses (Alikhan et al., 2010). In B. 

juncea, water deficit decreased leaf 
water potential (LWP) and relative 

water content (RWC) of leaf, resulting 

into greater osmotic adjustment and 

higher root growth. This helped the 

plants to explore greater soil volume 

for water resulting in better yield 
attributes and ultimately seed yield. B. 

juncea had greater osmotic 

adjustment than B. napus. This has 

been supported further by the fact 
that decreases in WP, RWC and 

osmotic potential (OP) promoted root 

growth in B. juncea, but not in B. 

napus (Indo-China-Australia Final 

Report (2011).  

It has been suggested that 
plant water status, rather than plant 

function, controls crop performance 

under drought. Therefore, the 

genotypes that maintain higher LWP 

and RWC are drought tolerant simply 

owing to their superior internal water 
status (Kamoshita et al., 2008). A 

positive relationship was observed 

between grain yield and RWC 

measured during the reproductive 

stage in wheat, where the high-yield 

selections maintained a significantly 

higher RWC than the low-yield 
selections (Tahara et al., 1990). 

However, studies suggest that 

differences in RWC among cultivars 

are highly influenced by plant 

maturity, adaptation and severity of 

stress, and hence it may be used as a 
secondary selection trait (Lafitte, 

2002).  

OA has been shown to maintain 

stomatal conductance and 

photosynthesis at lower water 

potentials, delay leaf senescence and 

death, reduce flower abortion, 
improve root growth and increase 

water extraction from the soil as water 

deficit develops (Turner et. al., 2001). 

Consistent differences in OA exist 

among cultivars which can be 

associated with plant production under 
drought stress in Brassica (Kumar et 

al., 1984). Beneficial effects of OA on 

root growth under water deficit 

conditions clearly show the value of 

this trait under water limiting 

conditions. At the juvenile and 
elongation stages, leaves of both 
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canola cv. Monty and mustard line EC 

397-23-2-3-3 adjusted osmotically 

after exposure to water deficit (Indo-
China-Australia Final Report (2011).  

 

Oxidative damage  

 

Drought stress increased production of 

reactive oxygen species (ROS) like 
superoxide radical (O2 •‒), singlet 

oxygen (1O2), hydrogen peroxide 

(H2O2) and hydroxyl radical (OH•) 

(Hasanuzzaman et al., 2012a; 2012b). 

Loss of water, decrease of 

photosynthetic pigments and increase 
in lipid peroxidation also gets 

significantly accelerated due to 

drought stress (Hasanuzzaman and 

Fujita, 2011).  Enzymatic ROS-

scavenging mechanisms in plants 

include superoxide dismutase (SOD), 

ascorbate peroxidase (APX), 
glutathione peroxidase (GPX) and 

catalase (CAT) (Vernoux et al., 2002). 

The activity of glutathione reductase 

(GR) increased only slightly at 10% 

PEG compared to APX and glutathione 

S-transferase (GST).  
 

Stomatal behavior, gas exchange 

parameters and water use 

efficiency 

 

Improving water use efficiency (WUE) 

would reduce the water requirement 
for a specific yield potential and thus 

can help save considerable amount of 

irrigation water. Genotypic variation in 

WUE has been reported in mustard 

(Singh et al., 2007) using carbon 

isotope discrimination technique. The 
association of WUE under rainfed 

condition with total dry matter (r = 

0.632**) and seed yield (r = 0.712**) 

was positive and significant (Singh et 

al., 2009). Transpiration showed 

positive and significant relationship 
with stomatal conductance (r = 

0.516*) and leaf area index (r = 

0.446*) under irrigated condition only 

(Singh et al., 2009). Transpiration 
efficiency (TE) influences the 

performance of crop under limited 

water condition. Genotypes having 

thicker leaves had greater WUE (Singh 

et al., 2003b).  

 
Canopy temperature 

 

Canopy temperature and stomatal 

conductance are directly related. 

Plants with high stomatal conductance 

transpire more, and thus maintain a 
cooler canopy temperature. Use of 

canopy temperature measurement as 

a screening technique under drought 

stress has received attention of the 

scientists, particularly with the advent 

of portable infrared thermometers 

(Ahmed et al., 1998). Canopy 
measurements in stress condition 

have been reported as an acceptable 

criterion in determining the drought 

stress in rapeseed (Fanaei et al., 

2009). Kumar et al. (1984) reported 

close associations of OA with both 
stomatal conductance and canopy 

temperature. There was a positive and 

significant correlation between the 

amount of ΔT (Tc – Ta) in Brassica 

types (mid-day) and stomatal 

conductance, plant osmoregulation 

and seed yield (Kumar and Singh, 
1998). 

 

Photosynthesis and other 

physiological parameters  

 

Mustard genotypes with drought 
tolerance traits provided relatively 

good yield under water stress 

condition. Such traits/parameters 

include OA (Singh et al., 1996), 

transpirational cooling (Chaudhary et 

al., 1989), epicuticular wax on leaves, 
difference between air and canopy 
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temperature and drought susceptibility 

index (DSI) (Singh and Choudhary, 

2003). Since physiological responses 
of plants to drought stress may vary 

at different developmental stages, 

different indicators may be used for 

the phenotyping under limited 

moisture condition. Currently, a 

number of indicators such as WUE, 
DSI, RVI and leaf wilting index (LWI) 

are used in breeding for drought 

tolerance in rapeseed and mustard. 

The details of these 

parameters/indices and their 

applications in Brassica crops are 
summarized in Table 1. 

In Indian mustard (B. juncea 

L.), DSI values for seed yield and 

component characteristics were 

calculated to characterize the relative 

tolerance of genotypes under irrigated 

and drought conditions (Singh and 
Choudhary, 2003; Chauhan et al., 

2007). Biomass and water potential 

have also been used as indices to 

evaluate the relative drought 

tolerance of different Brassica species 

(Ashraf and Mehmood, 1990). 
Regression analysis revealed that SLA, 

photosynthesis and water use 

efficiency contributed 74.5%, 61.5% 

and 81.8%, respectively to the 

variation under irrigated conditions. 

The corresponding contributions of 

these characters under rainfed 
conditions were 61.9%, 63.0% and 

59.2%, respectively (Singh et al., 

2009). Further, SLA, photosynthesis 

and water use efficiency also 

contributed 52.0%, 70.0% and 

68.3%, respectively to the total dry 
matter. The corresponding 

contributions of these characters 

under rainfed conditions were 72.0%, 

62.0% and 52.9% respectively to the 

total dry matter. Water stress caused 

increase in proline content, stomata 
closure and photosynthesis inhibition. 

Also, water stress caused a significant 

decrease in chlorophyll contents and 

increase in the accumulation of proline 
in Brassica crops (Gibon et al., 2000). 

Din et al. (2011) reported significant 

differences among the various canola 

genotypes for leaf chlorophyll a, 

chlorophyll b and proline 

accumulation. The Chla/Chlb ratio in 
most species increased slightly under 

moderate stress, while under severe 

stress it decreased. This is presumably 

due to faster damage of Chla 

compared to Chlb under moderate 

stress condition. The highest value of 
Chla/Chlb was observed in B. carinata, 

B. oleracea (under non-stress 

condition) and B. juncea (under 

moderate and severe stress 

condition). The analysis of changes in 

chlorophyll fluorescence kinetics 

provides detailed information on the 
structure and function of the 

photosynthetic apparatus, especially 

photosystem II (Strasser et al., 1995).   

 

Breeding for drought tolerance 

 
Breeding oilseed Brassica for drought 

tolerance is necessary to enhance and 

sustain production under rainfed 

conditions in many semi-arid parts of 

India. Substantial heritable variation 

has been reported in the primary and 

secondary gene pools, providing 
ample scope for the improvement of 

rapeseed and mustard for drought 

resistance.  

Escape mechanism, invariably 

used in most other crops, may be 

useful and effective in Brassica. 
Selection for earliness, however, is 

complex due to continuous podding 

behavior till maturity. Nevertheless, 

drought tolerance is associated with 

early flowering and partitioning of dry 

matter to reproductive parts.  
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Table 1. Parameters/indices for drought tolerance in Brassica species. 

Parameters/ 

Indices 
Species 

Develop-

mental 
stage 

Traits 
Drought 

regime 
Reference 

Biomass and water 
potential 

B.napus, 
B.juncea, 

B.campestri

s,B.carinata 

Seedling Biomass, 
water 

potential, 

osmotic 
potential 

Green house Ashraf and 
Mehmood (1990) 

DSI B.juncea Maturity Seed yield 

and 
component 

traits 

Experimenta

l field 

Singh and 

Choudhary(2003)
; Chauhan et al. 

(2007);  

Singh et al. 

(2018) 
LS, PSS, RVI B.napus Germination Biological and 

biophysical 

traits 

Petri-dish, 

10% PEG-

6000 
solution 

Yang et al. 

(2007) 

Principal 

component, 
clustering, 

subordinate 

function analysis 

B.napus Flowering Morphological 

and 
agronomic 

traits 

Rain-out 

shelter 

Zhu et al. (2011) 

Leaf wilting index 

(LWI) 

B.napus Seedling Biological and 

biophysical 

traits 

Pots in rain-

out shelter 

Li et al. (2012) 

TDM, LAI, RGR, 

CGR 

B.napus Whole stage Physiological 

growth indices 

Field Moaveni et al. 

(2010) 

DSI, drought susceptibility index;   RVI, relative vigor index; LS, length of seedlings; PSS, percentage of seedlings 

surviving after drought stress; LWI, leaf wilting index; TDM, total dry matter; LAI, leaf area index; RGR, relative 

growth rate; CGR, crop growth rate. 

 

Partitioning differences to 

reproduction parts may be more in 

moisture limited than in irrigated 

condition. However, anthesis, 
partitioning, harvest index (HI) and 

maturity are influenced by drought. 

Drought induced differences, 

therefore, make it difficult to detect 

genotypic differences. Thus, plants 

which bear more mature pods early in 
the season may be useful while 

improving Brassicae for drought 

situation. Selection based on whole 

plant maturity may not be useful as 

maturity period is strongly influenced 

by the dry environments. The 

phenomena of drought escape and 
drought avoidance operate in 

Brassicae. Some promising varieties 

identified for drought tolerance in 

India include Aravali, Geeta, GM-1, 

PBR 97, Pusa Bahar, Pusa Bold, RH 

781, RH 819, RGN 48, RB 50, RH 406, 
RGN 298 and RH 725. DRMR 541- 44 

has been registered as a donor for 

drought tolerance (Singh et al., 2017) 

The success of breeding for 

drought tolerance lies in the screening 

of high yielding and drought tolerant 
lines separately, hybridizing them, 

selecting drought tolerant lines in 

drought condition (F1 to F3), and 

finally predicting yields in targeted 

environments (Blum, 2005). In 

addition to this, time, intensity, 

duration and frequency of stress as 
well as plant, soil and climate 

interactions also affect plant 
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responses to water stress. In addition, 

the difficulty to establish well-defined 

and repeatable water stress conditions 
makes screening of drought tolerant 

genotypes even more complex 

(Ramirez and Kelly, 1998). Therefore, 

it is imperative to use different 

indicators for phenotyping of drought 

tolerance traits. Presently, a number 
of selection indicators such as stress 

tolerance index (STI), WUE, DSI, RVI 

and LWI are widely used to identify 

genotypes which provide high yield 

under both stress and non-stress 

conditions. 
 

Use of physiological and molecular 

approaches to improve drought 

tolerance in Brassica 

 

Drought tolerance is a typical 

quantitative trait; however, 
monogenic traits such as flowering 

time, plant height, ear type and OA 

may have important roles in 

adaptation to drought-prone 

environments. Special attention has 

been given to: (i) genetic variation of 
the OA (Robin et al., 2003), (ii) 

genetic bases of phenological trait 

such as stay green phenotype (Jiang 

et al., 2004), (iii) the ability of the 

roots to exploit deep soil moisture to 

meet evapo-transpirational demand 

(Nguyen et al., 2004), (iv) the 
limitation of water-use by reduction of 

leaf area and shortening of growth 

period (Anyia and Herzog, 2004), (v) 

isotope discrimination (Juenger et al., 

2005), (vi) the limitation of non-

stomatal water loss from leaves, 
through cuticle, for example (Lafitte 

and Courtois, 2002), and (vii) the 

response of leaf elongation rate to soil 

moisture and evaporative demand 

(Reymond et al., 2003). 

The improvement of crop yield 
has been possible through the indirect 

manipulation of quantitative trait loci 

(QTLs) that control heritable variability 

of the traits and physiological 
mechanisms that determine biomass 

production and its partitioning.  The 

QTL approach provides an opportunity 

to dissect out the genetic and 

physiological components affecting 

source-sink relationships under abiotic 
stress (Miralles and Slafer, 

2007; Welcker et al., 2007). The QTL 

for drought tolerance (leaf wilting 

under drought stress) was identified 

from seventy two double haploid (DH) 

lines from a cross between TX9425 
(drought and salinity tolerant) and a 

sensitive variety, Franklin based on a 

range of developmental and 

physiological traits in Brassica. 

Composite interval mapping (CIM) 

analysis revealed that four out of 30 

QTLs in F2 generation under irrigated 
conditions were identified for drought 

related physiological traits (Electrolyte 

leakage). A total of 19 QTLs were 

identified in F2:3 under irrigated 

conditions for various drought related, 

yield and other traits in Indian 
mustard including 4 QTLs for RWC. 

QTL analysis revealed a total of 7 

QTLs accounting for different 

phenotypic variance in F2:3 generation 

under drought conditions for various 

drought related, yield and other traits 

in Brassica juncea with one QTL 
identified for a physiological trait, 

Electrolyte leakage (Monika, 2015).  

A major QTL for days to 

flowering detected on linkage group 2 

was consistent and co-localized with 

QTL for δ 13C, proportion of aborted 
siliquae and lateral branch number. 

QTL was associated with traits such as 

plant height, root pulling force and δ 
13C in the DHYB canola population in 

both the treatments across years. 

However, four QTLs for siliqua length, 
one for number seeds/siliquae, five for 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409033/#bib140
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409033/#bib140
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409033/#bib225
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409033/#bib225
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409033/#bib225
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number of siliquae on the main 

raceme and one for 1000-seed weight 

were identified.  
 

Molecular basis of drought 

tolerance in Brassica crops 

 

Out of a total of 1,092 drought-

responsive genes, 37 transcription 
factors were identified. Twenty-eight 

were involved in signal transduction 

and 61 were involved in water- and 

osmo-sensing-responsive pathways. 

Among these genes, many were 

involved in response to abscisic acid 
(ABA) or water stress, indicating that 

ABA and water-stress-mediated signal 

transductions are possible 

mechanisms for root hydrotropic 

response. Such studies have provided 

a large number of candidate drought-

tolerant genes, which can be 
manipulated (mainly via over 

expression) to achieve enhanced 

drought performance in mustard 

crops. Liang et al. (2011) analyzed the 

top 10 genes predicted by the SVM-

RFE to be involved in water tolerance. 
Among the 41 top-ranked genes, 27 

(65.8%) were found to have altered 

transcript levels under various osmotic 

stress treatments. In recent years, 

functions of some drought-related 

genes have been characterized. Seo et 

al. (2010) reported that over 
expression of an ethylene-responsive 

factor (ERF) from B. rapa (BrERF4) led 

to improved salt and drought 

tolerance in Arabidopsis. Expression of 

BrERF4 was induced by ethylene or 

methyl jasmonate, and not by ABA or 
NaCl. Thus, BrERF4 seems to be 

activated through a network of 

signaling pathways in response to 

salinity and drought.  

 

CONCLUSION 

 

In the last three decades, significant 
advances have occurred in the area of 

plant physiology, molecular genetics 

and molecular biology. Integration of 

validated methods of screening, 

physiological parameters, low cost 

genotyping and phenotyping platforms 
and novel tools and techniques of 

molecular biology in breeding 

programs is needed to improve 

precision of selection for abiotic stress 

tolerance. Integrated breeding 

involving multidisciplinary (genetics, 
physiology, and biotechnology) 

approaches needs to be used to 

enhance efficiency of breeding 

programs (Choudhary et al., 2017).  

Multiple tolerance mechanisms 

to drought exist in oilseed Brassicas; 

these need to be integrated to achieve 
a high level of drought tolerance. To 

this end, there exists an example. The 

cis-acting dehydration response 

element (DRE) plays an important role 

in regulating gene expression in 

response to abiotic stresses. Under 
field conditions, plants more often 

experience multiple stresses. 

Transgenic approaches should be 

integrated with conventional breeding 

if gene(s) (QTLs) of interest are 

available in tertiary gene pool. It is 

interesting to note that most drought- 
tolerant transgenic lines have been 

developed using a single gene 

transformation, which may not be as 

productive as using transformation of 

many genes. Thus, it is considered to 

be a more logical approach to enhance 
crop stress tolerance by transferring a 

number of target genes. 
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