

PHYSIOLOGICAL AND MOLECULAR ASPECTS OF HEAT TOLERANCE IN WHEAT

S.K. DWIVEDI¹*, G. KUMAR², S. BASU³, S. KUMAR¹, K.K. RAO¹ and A.K. CHOUDHARY¹

¹Division of Crop Research, ICAR Research Complex for Eastern Region, Patna- 800014, India ²Department of Life Science, Central University of South Bihar, Patna-800014, Bihar, India ³Department of Biotechnology, Assam University, Silchar, Assam-788011, India *Corresponding author's email: sharad.dwivedi9736@gmail.com Email addresses of coauthors: gautam@cub.ac.in, sahana.basu9@gmail.com, santosh9239@gmail.com, koti1012@gmail.com, akicar1968@gmail.com

SUMMARY

Abiotic stresses are major constraints to crop production and food security. The situation is critical due to rapid changes in climatic conditions. Heat stress for wheat is one of the most important stresses having a severe impact on plant growth and productivity. Various studies have indicated that average maximum temperature higher than 32 °C during the reproductive phase negatively influenced wheat grain yield and average yield loss of up to 30% was reported. To screen or to develop a heat tolerant variety, it is very important to understand the physiological and molecular changes occurring inside the plant under heat stress. Terminal heat stress led to reduction in grain filling duration, thousand grain weight, grain number per head, and final yield. Furthermore, the elevated temperature-driven interruption in the transport of photosynthate from green foliage (source) to anther tissues (sink) leads to high pollen mortality and thereby decreases grain yield. This review provides a current update about heat induced physiological and molecular changes in wheat and the traits suitable for breeding of heat tolerant wheat genotypes. Previous studies conducted in the past have proven that wheat growth and yield were negatively influenced by abnormal temperatures due to physiological disruption. During recent years, many QTLs with significant effect on heat tolerance were identified. Further, heat stress has multilayered impact and, therefore, is very complex to understand completely. A better understanding of plant responses to heat stress has pragmatic implications for wheat breeding.

Keywords: Heat stress, molecular traits, physiological traits, wheat

Manuscript received: March 6, 2018; Decision on manuscript: April 5, 2018; Accepted: May 9, 2018. © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2018

Communicating Editor: Dr. Ed Redoña

INTRODUCTION

The production of food grains in recent decades is not keeping pace with growing population demand, leading to inflation and a risk to food and nutritional security in India and other developing countries. Furthermore, urbanization has forced agriculture harsh situations into more and marginal lands. The projected 70 % increase in global food requirements by the end of 2050 necessitates improvement in agricultural productivity with lower use of land and water (Fischer, 2014). Climate change could also strongly affect wheat production, which accounts for 21% of 200 food production and million hectares (ha) of farmland worldwide (Ortiz et al., 2008). The productivity of agriculturally important crops may be severely reduced when thev experience short episodes of high temperatures during the reproductive Heat stress has period. been recognized as the major threat to global food security (IPCC, 2007). Cropping areas of the Eastern and central part of the Asia, including the northern part of the Indian subcontinent and North America have been identified as the extremely threatened by heat stress (Teixeira et al., 2013).

Wheat is one of the major staple food crops and is the cheapest source of carbohydrate and protein in most parts of the world. It is grown on approximately 30% of the world's cereal area and around 220 million ha of global wheat cultivation area suffer from high temperature stress (Cossani and Reynolds, 2012). South Asia, which comprises of India, Bangladesh, Nepal and Pakistan, are the most populous regions of the world with a population of around 1.5 billion

(Witcombe and Virk, 2001). Together with rice, wheat is the primary food crop of this region and, therefore, is of vital significance for food security of (Joshi. these developing nations 2007). South Asia has around 36 million ha (or approximately 16% of the global wheat area) under wheat cultivation, contributing to around 15% of the world's wheat production (FAO, 2007). The present wheat production in South Asia is around 98 million tons but the projected demand till 2020 has been estimated to be around 137 million tons. The demand of wheat is rising but there is no additional increase in land for wheat cultivation chiefly by reason of growing urbanization and diversification (Anonymous, 2007).

In most parts of the world, global climate change due to rising ambient temperature is considered as one of the most negative actors for agricultural productivity. Global temperature is expected to be increased by 3 to 5 °C by the end of (IPCC, this century 2014). Temperature accelerates the developmental process plants in leading to the induction of earlier senescence and shortening of the growth cycle (Bita and Gerats, 2013). Terminal heat stress is a key abiotic stress severely affecting wheat growth and yield (Joshi 2007; Dwivedi et al., 2015). A major part of wheat cultivation in South East Asia including India has been found to be under threat of high temperature stress (Joshi, 2007). Heat stress is more prevalent in Eastern Indo-Gangetic Plains (EIGP), central and peninsular India, and Bangladesh and is more moderate in the north western parts of the EIGP. Delayed sowing of wheat due to the late harvesting of rice is one of the main reasons for terminal

heat stress in the eastern part of India (Dwivedi et al., 2017a). Wheat is grown under subtropical environment in India during mild winters, which warms up toward the grain filling stage of the crop. The North-West Plain Zone (NWPZ) contributes about 80% of the total wheat production. maturity and Forced crop vield reduction of wheat in the NWPZ is due to high temperature in the months of February and March, which causes stressful conditions for growth. Climate change does not only increase the mean temperature during the growth season but also intensifies the frequency of extreme heat events (Teixeira et al., 2013). Teixeira et al. (2013) emphasized the need to develop strategies and policies regarding agriculture to mitigate the impact of heat stress on the global food supply, particularly in subtropical agricultural areas which bear extensive crop yield losses due to extreme temperature events.

Heat waves occur more frequently with global warming (Tebaldi et al., 2006; IPCC, 2007). Production of major agriculture crops can be drastically reduced due to high temperature peaks even when they occur just for few hours (Prasad et al., 2008). The damage due to heat stress particularly high when elevated is temperatures occur concurrently with the critical crop developmental stages, particularly the reproductive period. Because of this, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) has acknowledged heat stress as an important threat to global supply (IPCC, 2007). Early food reports of heat stress on wheat, indicated a threshold temperature of 31 °C for the expected reduction in grain number during the period

around anthesis (EyshiRezaei et al., 2015) but other studies showed 30 °C (Liu et al., 2016) or 27 °C (Tashiro and Wardlaw, 1989) as heat stress threshold temperature in wheat. Asseng et al. (2015) tested 30 wheat crop models with artificial heating where mean temperatures in the growing season ranged from 15 to 32°C. There was a 1 to 28% decrease in wheat yield across 30 sites around the world from 1981 to 2010 with a 2 °C increase in temperature and the variation increased between 6 to 55 % when the temperature increased to 4 °C. Assena et al. (2015)also projected global wheat production to decline by 6% for each 1 °C of further temperature increase.

Lower yields are obtained in dry and semi-dry environments as a result of continual rise in temperature that coincide with the anthesis and grain filling periods of crops (Moral et al., 2003, Dwivedi et al., 2015). Due to global warming and changes in climate patterns, it is vital to mitigate the effects of heat stress and identify potential ways of improving heat tolerance for the success of wheat production under heat stress environments. Deryng et al. (2014) considered selection of cultivars and managing sowing windows as adaptive measures under extreme heat stress conditions. Some other adaptation are surface cooling measures by irrigation (Lobell et al., 2008), antioxidants defense (Suzuki et al., 2011; Caverzan et al., 2016), and osmoprotectants (Faroog et al., 2011; Kaushal et al., 2016). However, development of heat-tolerant wheat varieties and improved pre-breeding materials for any future breeding program is vital in meeting food security (Ortiz et al., 2008). Proteomic and transcriptomic studies are

significant to identify environmental stress responsive genes and proteins that affect yield and quality of wheat. The problem of heat stress is likely to be even worse in the near future under global climate change scenarios, which has become one of the utmost challenges that humanity will face to feed the growing population. Hence, development and identification of terminal heat stress tolerance wheat germplasm may be a noble strategy to resolve the imminent crucial problem caused by global warming. Besides, it is crucial to develop genotypes that are early in maturity so as to escape the terminal heat stress (Joshi, 2007).

MORPHO-PHYSIOLOGICAL TRAITS INFLUENCED BY HIGH TEMPERATURE

sowing of wheat in India, Late particularly in the EIGP, is a quite common practice due to the late long-duration harvesting of rice varieties. Heat stress has been described as a complex phenomenon affecting plant growth and physiology, ultimately resulting in poor yield and grain quality (Mondal et al., 2013). Heat stress has also been reported to modify plant water relations (Hasanuzzaman et al., 2012, 2013), thereby reducing photosynthetic (Almeselmani performance et al. 2012). It also alters the metabolic activities in plants leading to the production of reactive oxygen species (Faroog et al., 2011; Wang et al., 2011). Furthermore, heat stress has also been found to alter hormonal levels in plants, promoting ethylene al., production (Hays et 2007; Krasensky and Jonak, 2012). Elevated temperature also hampers the reproductive development in plants,

leading to impaired pollen tube formation and pollen mortality (Oshino et al., 2011). High temperature also induces considerable variations in the exchange processes gas and membrane thermo stability. Disturbance of protection system under high temperature stress caused carbon an alteration in normal metabolic process, which in turn negatively regulated starch granule deposition in the developing endosperm. Studies also show that rises in temperature causes metabolic changes in the wheat senescence (Farooq et al., 2011). Furthermore, heat stress also led to the inhibition of chlorophyll biosynthesis which triggers the senescence programme (Gupta et al., 2000). Heat stress during the terminal phase of the crop also inhibits starch biosynthesis which in turn reduces the normal grain size (Kushwaha et al., 2011). Deshmukh et al. (1991) suggested the estimation of membrane stability in terms of ion leakage to act as an index for screening wheat genotypes against heat. Apart from these, production of active oxygen species (AOS) was suggested as another criteria to measure the impact of heat stress (Liu and Huang, 2000). However, plants have developed a chain of scavenging mechanisms that convert highly AOS to H₂O under heat stress conditions (Larkindale and Huang, 2004). The protection mechanism at the cellular and sub- cellular levels is manifested via various anti-oxidants like dismutase, superoxide ascorbate peroxidase, glutathione reductase, and catalase while metabolites like glutathione, ascorbic acid, αtocopherol, and carotenoids were produced regularly inside the plant system.(Sairam et al., 2000, Bansal and Srivatstava, 2012).

Morpho-anatomical and phenological responses

Hiah temperature alters plant morphology and phenology in terms of leaf area, plant height, and pattern of plant development. Previous studies showed that long-term impact of high temperature stress on growing seeds caused poor germination and vigor; in turn affecting emergence and seedling establishment. The harmful effect of heat stress has also been observed in terms of scorching of leaves and twigs, leaf senescence, lesser canopy growth and poor yield (Vollenweider, 2005). One of the severe effects of high temperature is the premature death of plants (Hall, 1992). Moreover, little information is available regarding the anatomical changes of the plant system under high temperatures. Reduction in cell size, partial closure of stomata for restriction of water loss, and increased number of xylem vessels in root and shoot have been observed at whole plant level in response to heat stress (Anonymous, 2004). At the subcellular level, significant alterations occur in the chloroplast structure that causes variation in the normal photosynthetic process. Heat stress negatively regulates the stacking of the grana and structural organization of thylakoids (Karim, 1997). The collective effect of the heat stressinduced morpho-physiological alterations may lead to poor canopy formation and decreased productivity. Further depiction of variations in terms of plant phenology due to high temperature stress provides a clue for the understanding of the better interaction between the plant and its Different surrounding atmosphere. stages of plant growth vary in their sensitivity to rising temperatures;

however, it is species and genotypic specific (Howarth, 2005). Moreover, reproductive the stage is hiahlv vulnerable to heat stress. During reproduction, a spell of heat stress lead to the pollen sterility and abortion of the open flower, and this may vary between species (Guilioni, 1997: Young, 2004).

Physiological responses under heat stress

Physiological responses of wheat to terminal heat stress have been found to be well determined by genotype susceptibility resistance or (Almeselmani, 2006). Increase in temperature due to late sowing significantly decreases leaf ascorbic content and relative acid water content (RWC) in wheat after anthesis (Sairam et al., 2000).

Waters relations and heat stress

Plant water status is one of the important parameters under changing temperatures as it is severely impeded by heat stress (Machado and Paulsen, 2001). Simoes-Araujo *et al.* (2003) showed that high temperature stress leads to reduced water availability under field conditions. In general, during daytime, high rate of transpiration in plants creates water insufficiency, causing a lower water potential and leading to disturbances of many physiological processes (Tsukaguchi, 2003). Relative water content (RWC) of wheat cultivars were studied in leaves under normal and late sowing conditions during the dry seasons and the results showed a reduction in RWC across the cultivars as compared to the normal sown condition (Dwivedi et al., 2017b). It was observed that, high temperature

strongly affects water relations when water is limiting. Thus, increasing the level of thermo-tolerance in wheat might improve its potential to acclimate to both high temperature and drought (Machado and Paulsen, 2001).

Accumulation of compatible osmolytes under heat stress

major adaptive mechanism to А extreme temperatures is the accumulation of certain low-molecular organic compounds called weiaht osmolytes like sugars, polyols, proline, betaine, and alvcine tertiarv sulphonium (Sakamoto, 2002, Sairam and Tyagi, 2004). Accumulation of such osmolytes provides tolerance to the plant under high temperature stress. One important osmolyte Glycinebetaine (GB) plays a significant role in plants under salinity or high temperature (Sakamoto, 2002). Another compatible solute proline also acts as an osmo-protectant and has been widely reported in various plants in response to abiotic stresses (Kavi Kishore et al., 2005). Glycine betaine and proline act as a buffering agent thus buffer cellular redox potential under high temperature stress (Wahid and Close, 2007).

Photosynthetic characteristics under heat stress

Plant growth is usually determined by various gas exchange traits and both are severely impeded by heat stress. Therefore, modifications in these physiological activities regulate the thermal tolerance. Wise *et al.* (2004) reported that photochemical reactions in the thylakoid lamellae and carbon metabolism in the stroma of the chloroplast are the main sites of heat

injury. Chlorophyll fluorescence has been shown to be correlated with thermo-tolerance (Yamada 1996). Under high temperatures, the photo system II activity is greatly reduced as it is highly thermo-sensitive (Camejo et al., 2005). Heat stress alters the enzymatic activities involved in carbon metabolism. Rubisco, the chief enzyme of Calvin cycle is severely down-regulated under heat stress that alters the RuBP regeneration rate through disrupted electron transport chain and inactivated oxygen evolving enzymes of PSII (Salvucci, 2004). Moreover, the concentration of photosynthetic pigments (Todorov et al., 2003), different soluble proteins, and rubisco binding proteins (RBP) decreases due to heat shock. Heat stress also affects the large and small sub units of rubisco in darkness; however, it induces them in light, indicating their functions as chaperones and heat shock proteins (HSP) (Kepova et al., 2005). Further, the starch or sucrose synthesis greatly influenced by heat stress as noticed from decreased activities of sucrose phosphate synthase (Chaitanya et al., 2001). ADP alucose pyrophosphorylase, and invertase (Vu et al., 2001). A familiar impact of increasing temperature in plants is the damage caused by heat-induced imbalance in photosynthesis and respiration. Heat stress causes decrease in the photosynthesis rate contrasting with significant increase in the dark and photo-respiration rates. the photosynthetic CO_2 Moreover, assimilation rate in developing leaves has been found to be less influenced high temperature than the by completely developed leaves.

Senescence of leaves due to physiological changes in cool season cereal species due to decreased chlorophyll content may be the effect of heat stress. Further, it is important to understand how terminal heat stress particularly impairs chlorophyll biosynthesis (Almeselmani *et* al., 2011).Heat stress-induced degradation of chlorophyll and thereby reduced photosynthetic rate in plants may be due to the over accumulation of ROS Alternatively, reduction in photosynthetic rate can also be explained through restrictions in non-stomatal stomatal and conductance under high temperature stress (Misson et al., 2010). According to Shao et al. (2008), limitation in non-stomatal conductance may be **ROS-induced** induced by the membrane injury as depicted from the membrane stability index. Reduced transpiration under heat stress may be due to the unavailability of enough water caused by lower conductance.

Assimilate partitioning inside plant system under heat stress

30-50% of About global yield variability was explained by climate related factors (Ray et al., 2015; Frieler et al., 2017; Zampieri et al., 2017). Liu et al. (2016) estimated that °C global temperature increase 1 might cause reduction in global wheat yield by 4.1% to 6.4% depending on the method used for yield projection. Increased mean temperatures mainly results in a shortening of the length of the growing season by acceleration of the development rate (Asseng et al., 2015). Heat stress severely decreases the grain yield in plants by hampering the source-sink movement. Assimilate partitioning in the plant system take place via two major modes i.e. symplastic and apoplastic pathways

and these plays significant roles in transfer and partitioning of assimilate under heat stress (Taiz and Zeiger, 2006; Yang et al., 2002). Wardlaw (1974) reported that three main reasons for lower grain filling rate in wheat under heat stress are source (flag leaf blade), sink (ear), and pathway transport (peduncle).The transport and portioning of assimilates (phloem loading) is optimum up to 30 ⁰C; however, the movement through the shoot is independent of temperature. In the case of wheat, the transport and mobilization of assimilates are highly temperaturedependent. This suaaests that improved mobilization efficiency from the source to the sink act as a key strategy for better grain filling and yield in wheat under high temperature stress. However, limited knowledge is available on assimilate partitioning under heat stress; thus in depth studies are required to improve production efficiency of the crop.

Cell membrane thermo-stability and heat stress

The role of cellular membranes under different stresses is critical for photosynthetic and respiration mechanisms (Blum 1988). Plant cells maintain the membrane fluidity under heat stress through denaturation of or increased amount of proteins unsaturated fatty acids (Savchenko et al., 2002). Heat stress induces the membrane permeability, leading to increased electrolyte leakage. Heat stress tolerance in plants has been found to be associated with decreased cell membrane thermo-stability (CMT) and has been well established in wheat (Blum et al., 2001).

Hormonal changes inside plant system under heat stress

Plants are usually capable of sensing and acclimatizing themselves to the unfavorable environmental conditions. Plants' tolerance towards the changing climatic conditions is significantly specific governed by their and genotypic variation. Regulation of major phyto-hormones play important role in this background. It was observed that the hormonal homeostasis, stability, content, biosynthesis and compartmentalization altered are under heat stress (Maestri et al., 2002). Different environmental stresses including high temperature resulted in increased levels of ABA. ABA helps in adaptation of plants to desiccation by modulating the regulation of numerous abiotic genes (Xiong et al., 2002). Maestri (2002) reported that the induction of ABA is an important component of thermotolerance. Other studies also suggest ABA-mediated that induction of several HSPs (e.g., HSP70) may be a probable mechanism for conferring thermo-tolerance (Pareek et al., 1998).

Among plant hormones, salicylic acid (SA) is also involved in high temperature responses evoked by plants.SA has been reported to stabilize the heat shock transcription factors (trimers) and assists them to bind the heat shock elements with the promoter of heat shock related genes. Ca^{2+} homeostasis and antioxidant systems have been reported to be involved in SA-induced long term thermo-tolerance (Wang, 2006). In dwarf wheat varieties, heat stressinduced reduction in cytokinin content has been found to be accountable for decreased grain filling and dry weight

(Banowetz, 1999). The possible functions of other phytohormones in plant heat-tolerance are yet to be revealed.

BIOCHEMICAL AND MOLECULAR TRAITS INFLUENCED BY HEAT STRESS

Oxidative stress and antioxidants potential of plant system under heat stress

Oxidative stress also known as secondary arises stress as а consequence of different kinds of abiotic stresses, including heat stress. Under heat stress, various kinds of active oxygen species (AOS) like oxygen $(^{1}O_{2}),$ superoxide singlet radical (O^{2-}) , hydroxyl radical (OH^{-}) , and hydrogen peroxide (H_2O_2) are produced in the plant system, which causes cellular injury (Liu and Huang Reactive oxygen 2000). species causes cell injury by hindering the semi-permeability of cellular and subcellular membrane through membrane lipid peroxidation, which is usually measured in terms of malondialdehyde (MDA) or 2thiobarbituric acid reactive substances (TBARS) content (Xu et al., 2006). For scavenging ROS, the plant produces various anti-oxidants like catalase (CAT), super oxide dismutase (SOD), and ascorperoxidase (APX). Superoxide dismutase (SOD) mediated detoxification of O₂⁻results in H₂O₂production, which is further scavenged by CAT and APX. Further research regarding the involvement of signaling molecules for improving the antioxidant system under heat stress is required.

Role of stress proteins under heat stress

The plant synthesizes various stress proteins in response to abiotic stresses which perform a vital role in the survival mechanism of plants (Wahid et al., 2007). Further, HSPs are entirely involved in high temperature response; certain other proteins also significant roles plav in this background. It has been found that with sudden or steady raise in temperature, plants experience the increased production of HSPs (Nakamoto and Hiyama, 1999). HSPthermo-tolerance triaaered bv induction coincides with the organism being under stress and extremely rapid and intensive biosynthesis of HSPs. Particular HSPs have been identified in response to risina temperatures in different crop species. There is substantial evidence that attainment of heat-tolerance is directly related to the synthesis and accumulation of HSPs (Bowen et al., 2002).

Molecular research of heat stress in wheat

Despite advances in our understanding of genes of major effect conferring disease resistance in wheat (Krattinger et al., 2009), the genetic basis of heat adaptation is poorly understood. Currently, no "heat tolerance" genes have been cloned. Heat stress tolerance in plants has been found to be linked to different quantitative trait loci (QTLs) (Blum, 1988). OTLs in wheat have been detected by using various traits indicating heat tolerance, including GFD, CTD and yield (Paliwal et al., 2012; Mason et al., 2010; Bennett et al., 2012). Mason et al. (2010)

performed studies involving OTL analysis for the heat susceptibility index (HSI) of yield and yield related traits. Mapping of QTL associated with heat tolerance traits may help in developina wheat cultivars with enhanced thermo-tolerance using marker-assisted selection (MAS) (Paliwal et al., 2012) (Table 1). Many OTLs have been identified in relation to heat stress (Table 2) however they need to thoroughly validate to confirm usefulness before selection in actual breeding programs.

Ca²⁺ and HSPs under heat stress

Seed germination, one of the critical stages in a plant's life cycle is severely hindered by heat stress. Thermotolerance adult plant of the is associated with the seed germination in wheat (Blum and Sinmen, 1994). The developing seedling uses the carbohydrates stored the in endosperm of cotyledons. Starch, the main storage reserve in the wheat endosperm is hydrolyzed by a- and β amylases to glucose, maltose, and low oligomolecular weight and disaccharides. High temperature decreases starch mobilization caused by reduced activities of a- and β amylases (Bhatia and Asthir, 2014). During seed germination, sucrose synthase, amylases, and invertases play critical roles in carbohydrate metabolism in wheat. Differential amylase activity has been found to determine thermo-tolerance in wheat (Alka et al., 1995). Calcium has been revealed to enhance thermo-tolerance in plants by regulating carbohydrate metabolism (Berenguer et al., 2004; Bhattachariee, 2008). Elevated Ca²⁺concentration regulate seedling arowth under stress heat bv stimulating the activities of sucrose

0		T 11	
Chromosome 1A	QTL QHskm.tam-1A	Trait HSIfor kernel weight	Reference Mason <i>et al.</i> , 2010
IA	QHSKIII.tall-1A	Ethyleneproduction in	Valluru <i>et al.</i> , 2010
		spikes	
1B	QCch.cgb-1B	HTI for chlorophyll content	Li <i>et al</i> ., 2012
	QWax.tam08-1B QWax.tam09-1B	Flag leaf cuticular waxes	Mondal <i>et al</i> .,2015
	QHtscc.ksu-1B	Chlorophyll content	Talukder <i>et al</i> ., 2014
1D	QHttmd.ksu-1D	Thylakoid membrane damage	Talukder <i>et al</i> ., 2014
2A	QHskm.tam-2A	HSI for kernel weight	Mason <i>et al</i> ., 2010
2B	QHthsitgw.bhu-2B	TGW	Paliwal <i>et al</i> ., 2012
	QHknm.tam-2B	HSI for kernel number	Mason <i>et al</i> ., 2010
	QHtpmd.ksu-2B	Plasma membrane damage	Talukder <i>et al</i> ., 2014
		Spike dry weight	Valluru <i>et al</i> ., 2017
2D	Q.Irwc.cgb-2D	LeafRWC	Li <i>et al</i> ., 2013
	Q.Icc.cgb-2D	Chlorophyll content	Li <i>et al</i> ., 2013
	QTdl.tam09-2D	TD of flag leaves	Mondal <i>et al</i> ., 2015
3A	QCfph.cgb-3A	HTI for chlorophyll fluorescence	Li <i>et al</i> ., 2013
3B	Q.Yld.aww-3B-2	Grain yield	Bennett <i>et al</i> ., 2012
	qDHY.3BL	Yield, TGW	Thomelin <i>et al</i> ., 201
	Q.Yld.aww-3B-1	Grain yield	Bennett <i>et al</i> ., 2012
	QHknm.tam-3B	HSI for kernel number, HSI for kernel weight	Mason <i>et al.</i> , 2010
		Ethylene production in spike	Valluru <i>et al</i> ., 2017
	QTdl.tam09-3B	TD of flag leaves	Mondal <i>et al</i> ., 2015
	QTds.tam09-3B	TD of main spike	Mondal <i>et al</i> ., 2015
	QCch.cgb-3B	HTI for chlorophyll content	Li <i>et al</i> ., 2013
3D	Q.Yld.aww-3D	Grain yield	Bennett <i>et al</i> ., 2012
	QWax.tam09-3D	Flag leaf cuticular waxes	Mondal <i>et al</i> ., 2015
	Q.Itgw.cgb-3D	TGW	Li <i>et al</i> ., 2013
4B	Q.Icc.cgb-4B.1	Chlorophyll content	Li <i>et al</i> ., 2013
		Spike dry weight	Valluru <i>et al</i> ., 2017
4D	Q.Yld.aww-4D	Grain yield	Bennett <i>et al</i> ., 2012
5A	QTds.tam09-5A	TD of main spike	Mondal <i>et al</i> ., 2015
	QWax.tam09-5A	Flag leaf cuticular waxes	Mondal <i>et al</i> ., 2015
5B		Ethylene production in spike, Spike dry weight	Valluru <i>et al</i> ., 2017
	QTds.tam09-5B	TD of main spike	Mondal <i>et al</i> ., 2015
	Q.Icc.cgb-5B.1	Chlorophyll content	Li <i>et al</i> ., 2013
	Q.Icfps.cgb-5B	Chlorophyll fluorescence	Li <i>et al</i> ., 2013
6A	QHttmd.ksu-6A	Thylakoid membrane damage	Talukder <i>et al</i> ., 2014
	Q.Itgw.cgb-6A	TGW	Li <i>et al</i> ., 2013

Table 1. List of QTL associated with heat tolerance (Adopted from Ni et al., 2018).

Chromosome	QTL	Trait	Reference
	QRdwh.cgb-6A	HTI for root DW	Li <i>et al</i> ., 2013
	QSDwh.CGB-6A	HTI for shoot DW	Li <i>et al</i> ., 2013
	Q.Ictd.cgb-6A.1	CTD	Li <i>et al</i> ., 2013
6B		Spike DW	Valluru <i>et al</i> ., 2017
7A	Q.Yld.aww-7A-1	Grain yield	Bennett <i>et al</i> ., 2012
	QHttmd.ksu-7A	Thylakoid membrane damage	Talukder <i>et al</i> ., 2014
		Spike DW	Valluru <i>et al</i> ., 2017
7B	Q.Irwc.cgb-7A.1	Leaf RWC Spike DW	Li <i>et al</i> ., 2013 Valluru <i>et al</i> ., 2017
	QHthsitgw.bhu-7B	TGW	Paliwal <i>et al</i> ., 2012
	QHthsiYLD.bhu-7B	Grain yield	Paliwal <i>et al</i> ., 2012
	QlsYLD.bhu-7B	Grain yield	Paliwal <i>et al</i> ., 2012
	QHtctd.bhu-7B	CTD	Paliwal <i>et al</i> ., 2012
7D	QHthsitgw.bhu-7D	TGW	Paliwal <i>et al</i> ., 2012
	Qls-dm.bhu-7D	Days to maturity	Paliwal <i>et al</i> ., 2012

Table 1. List of QTL associated with heat tolerance (Adopted from Ni *et al.*, 2018)(cont'd).

Table 2. Relatively heat tolerant wheat genotypes developed (Adopted from Dwivedi *et al.*, 2017a).

Heat tolerant wheat varieties	WH730, GW273, NW1014, RAJ 3765, NW 1014, HUW 234, Halna, HD3120, DBW 14, HI 1563 and HD2987

andstarch-hydrolysing enzymes (Bhatia and Singh, 2000). Calcium ions (Ca^{2+}) alleviate heat-induced damages and assist the plant cells to recover from stress by forming heat shock proteins (HSPs) (Marina *et al.*, 1999; Wang and Li, 1999).

Heat shock proteins play a crucial regulatory role in acquired heat tolerance. The HSPs are induced by heat stress function as molecular chaperones (Basha et al., 2004). They stabilize proteins by binding to unstable proteins and facilitating proper folding of non-native proteins under heat stress (Hendrick and Hartl, 1993). HSPs play an important role in protein folding, refolding, translocation, and degradation (Feder and Hofmann, 1999). Twelve cytosolic

wheat small HSPs (Joshi and Nguyen, 1996) along with two mitochondrial sHSPs (Basha et al., 1999) and chloroplastics HSP (Chauhan et al., 2012) have been reported in wheat. HSP20 genes play an important role in arowth development the and processes in wheat. Up-regulation of selected transcripts in wheat indicates strong correlation of plant defense under heat stress. Over-expression of chloroplastic small wheat HSP (TaHSP26) has been reported to improve thermo-tolerance (Chauhan et al. 2012). Wheat adaptation to heat stress is mediated by regulation of HSP genes with Heat shock factors (HSFs) (Xue et al., 2014). A member of HSFs- HSF3 of the wheat HSF family, has been found to be

responsible for enhanced heat tolerance (Zhang *et al.*, 2013).

Heat stress effect on reactive oxygen species and antioxidant activities

Energy-related metabolism in plant cells takes place in the mitochondria, chloroplasts and peroxisomes. These cellular compartments produce cytotoxic reactive oxygen species (ROS) under oxidative stress employed by heat stress (Gill and Tuteja, 2010; Caverzan et al., 2016). ROS being detoxified is bv а specialized cellular antioxidant defence machinery. Heat stress disturbs the balance between ROS production and detoxification, causing severe damage to cellular components (Bhattacharjee, 2013). Accumulation of ROS is considered as one of the major phases in the heat stress signaling cascades. ROS-induced potential damage can be avoided by regulating the equilibrium between ROS production and detoxification at the intra cellular level. Production of hydrogen peroxide (H_2O_2) has been reported to depend on the intensity and duration of the stress. Difference in level of H_2O_2 between various cellular compartments is associated with the type of stress (Slesak et al., 2007).

The balance between the production and elimination of ROS is sustained by enzymatic and nonenzymatic antioxidants (Mittler, 2002; Mittler et al., 2004). The enzymatic anti-oxidative system comprise several antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), quaiacolperoxidise (POX) and enzymes of the ascorbate-glutathione (AsAGSH) cycle, such as ascorbate peroxidase (APX), glutathione reductase (GR)

(Asada, 1999; Mittler, 2004). Non enzymatic components include the major cellular redox buffers ascorbate (AsA) and glutathione (GSH) as well tocopherol, carotenoids as and phenolic compounds (Mittleret al., 2004; Grataoet al., 2005; Scandalios, 2005). Super oxide dismutases establish a primary line of defence ROS. bv catalysing against the dismutation of O_2^{-} (superoxide radical) to H_2O_2 . These enzymes are classified according to their sub-cellular location and metal cofactor (Cu/Zn, Mn,Fe, and Ni).. Increase in the SOD transcript in response to differential heat shock treatment has been observed in wheat indicating enhanced tolerance (Kumar et al. 2013). Catalases catalyze the conversion of H_2O_2 into H_2O . CAT proteins are abundantly localized to peroxisomes. The CATs genes respond differentially to various stress conditions (Scandalios, 2005). Ascorbate peroxidases detoxify H₂O₂ through its reduction into H₂O and use ascorbate as a specific electron donor. APX proteins are distributed in chloroplasts, mitochondria, peroxisomes, and the cytosol. The APX genes show differential modulation by several abiotic stresses in plants (Caverzan et al., 2012). A mutant wheat line with reduced thylakoid APX activity has been reported to cause impaired photosynthesis (Danna et al., 2003). In wheat, several studies have reported alterations in the activity of SOD, APX, CAT, GR, and POX to govern heat-induced oxidative stress indicating positive activation of ROS detoxification (Sairam et al., 2000). Heat tolerance in wheat has been found to be determined by higher antioxidant capacity resulting in lower oxidative damage, which has а distinctive genotypic effect.

Heat stress effect on photosystem II

Photosystem II (PSII) is a large pigment-protein complex, comprising reaction centers (RCs), the oxygenevolving complex (OEC), and the chlorophyll a/b light-harvesting antenna complex (LHC) (Allahverdiyeva et al., 2013). The PSII complex is composed of many low molecular weight proteins (molecular mass below 15 kDa), involved in PSII dimerization, assembly, electron transfer, and protein phosphorylation (Shi et al., 2012; Pagliano et al., 2013). Heat stress leads to the inactivation of PSII (Oukarroum et al., 2012), stomatal closure (Yamori et al., 2006a), and deactivation of rubisco al. 2006b), (Yamori et thereby Calvin inhibiting the cycle and photosynthetic activities in plants (Crafts-Brandner and Law, 2000). Heat stress has been revealed to primarily damage RCs of PSII. Within the PSII complex, the D1 protein - the main member of PSII core - is the most sensitive tos heat stress (Li et al., 2016). Heat stress-induced ROS production in the thylakoid membrane has been found to be involved in degrading the D1 protein (Yamamoto et al., 2008) and inactivating of PSII (Yamashita et al., 2008).

Heat stress and pollen development

During reproduction, a short period of heat stress can cause flower abortion (Guilioni *et al.*, 1997; Young *et al.*, 2004). Elevated ambient temperature negatively affects pollen development in wheat. Heat stress for prolonged duration depletes the amount of food reserves in maturing pollen grains owing to increased respiration for sustaining adaptive metabolic activity, thereby resulting in pollen mortality (Dwivedi et al., 2017b). Furthermore, hiah temperature-induced earlier microsporogenesis causes aberrations in the tapetum development and decreases hexose supply by tapetal cells reducing pollen viability (De Storme and Geelen, 2014). Aberrations durina tapetum development degeneration, and including hypertrophy and prematureness, along with delayed degeneration and morphology of the tapetal endoplasmic reticulum, have been observed in wheat (Saini et al., Pollen and tapetum cells 1984). accumulate innumerable mitochondria and show fast respiration during development and pollen tube growth (Lee and Warmke, 1979; Selinski and Scheibe, 2014). Heat stress leads to a dramatic increase in ROS within the mitochondria, obstructing the ROS scavenging mechanism. Hydrogen peroxide level within pollen has been observed to increase dramatically in wheat under heat stress (42 °C) accompanied bv the antioxidant activity (Kumar et al., 2014). The APX has been found to be upregulated in developing wheat pollen in response to heat stress (Chaturvedi et al., 2015; Frank et al., 2009) (Table 3).

CRITERIA FOR SCREENING HEAT TOLERANT WHEAT GENOTYPES

Various criteria have been reported by many researchers to identify heat tolerant wheat genotypes (Table 2 and 4). Traits like heat susceptibility index (HSI) (Mason *et al.*, 2010), membrane thermo-stability (Reynolds *et al.*, 1994) canopy temperature depression (Reynolds *et al.*, 1994) chlorophyll content, the normalized difference

Molecular strategies	References
Elevated Ca ²⁺ concentration	Marina et al. (1999); Wang and Li (1999); Bhatia and Asthir (2014)
HSFs and HSPs	Blumenthal et al.(1994), Joshi and Nguyen (1996); Basha et al.
upregulations	(1999); Sumesh et al. (2008), Sharma-Natu et al.(2010), Chauhan et
	<i>al.</i> (2012); Zhang <i>et al.</i> (2013); Xue <i>et al.</i> (2014)
Over-expression of DHN-5	Brini <i>et al.</i> (2010)
Over expression of	Lillig <i>et al</i> . (2008); Cheng <i>et al.</i> (2009); Wu <i>et al.</i> (2012)
glutaredoxin (GRX)	

Table 3. Different molecular strategies of heat stress mitigation in plants.

Traits/characters	References
Photosynthesis rate	Reynolds et al.(1994), Dwivedi et al. (2017b)
Spike photosynthesis	Cossani and Reynolds (2012),
Leaf chlorophyll content	Reynolds <i>et al</i> .(1994)
Canopy temperature depression	Shanahan <i>et al.</i> (1990); Reynolds <i>et al.</i> (1994, 1998); Amani <i>et al.</i> (1996); Blum <i>et al.</i> (2001), Dwivedi <i>et al.</i> (2017b)
Membrane stability	Talukder <i>et al.</i> (2014), Dwivedi <i>et al.</i> (2017b)
Flagleafstomatal conductance	Reynolds <i>et al.</i> (1994)
Grain weight	Tyagi <i>et al.</i> (2003); Singha <i>et al.</i> (2006); Dias and Lidon (2009), Bennani <i>et al.</i> (2016),Rezaei <i>et al</i> . (2018)
Early heading	Tewolde <i>et al</i> .(2006), Hussain <i>et al</i> . (2016)
High temperature index/ Heat Susceptibility Index	Rane and Nagarajan (2004), Dwivedi et al. (2017b)
Stay-green	Xu <i>et al.</i> (2000); Reynolds <i>et al.</i> (2001) Lopes and Reynolds (2012), Nawaz <i>et al.</i> (2013), Abdelrahman <i>et al.</i> (2017)
Stem carbohydrate re-mobilization	Cossani and Reynolds (2012), Dwivediet al. (2017b)
Pollen viability	Dwivedi <i>et al</i> . (2017b)
Number of fertile spikes	Khan and Kabir (2014), Bennani <i>et al</i> . (2016)
Anti-oxidants activity	Sairam <i>et al</i> . (2000), Gupta <i>et al.</i> (2013)
Grain filling durations	Song et al. (2015), Dwivedi et al. (2017b)

vegetation index, stay-green trait (Harris et al., 2007), and stomatal conductance (Reynolds et al., 1994) have been reported as the marker traits to differentiate heat susceptible and tolerant wheat genotypes. Canopy temperature depression (CTD) is considered to be the most efficient to assess heat tolerance since one single reading integrates scores of leaves (Reynolds et al., 1994), CTD is highly heritable and easy to measure using a hand-held infrared thermometer on days (Reynolds sunnv et al., 1994).Even though an association

between the stay green trait and yield and vield traits has been reported in various crops, published studies on a possible association between the stay green trait and CTD in different crops are scarce. Under hot and irrigated infrared conditions, usina thermometers has been successfully used to screen wheat genotypes for their performance by measuring the difference between canopy and air temperature (CTD) (Reynolds et al., 1994). Gibson and Paulsen (1999) reported yield loss up to 3 to 5 % for 1 ^oC rise in temperature which also

influences physiology, growth and yield traits. High temperature at anthesis decreases the grain number per spike (Prasad et al., 2008) and grain size (Viswanathan and Chopra, 2001), both of which have significant effects on grain yield. The grain yield was affected by decreasing size of individual grains due to high temperature at the grain filling stage. Ferris et al. (1998) reported that in wheat, both number of grains and grain weight seem to be sensitive to heat stress, as, at maturity there is a decline in the number of grains per head with risina temperature. Mahrookashani et al. (2017) reported that single grain weight was reduced under drought stress by 13%-27% and by 43%-83% under combined stress (heat and drought stress). Further responses at cultivar level were similar for heat stress but different for combined stress (heat and drought stress) and drought alone. The magnitude of reduction in grain number was more under combined stress (heat and drought stress) than under drought or high temperature stress alone. Reproductive processes are clearly affected by high temperatures in most which eventually plants, affect fertilization and post-fertilization processes leading to reduced crop yield. Recommended wheat cultivars for sowing under delayed sowings of the Indo-Gangetic Plains of India are PBW 373, UP 2425, and RAJ 3765for the NWPZ and NW 1014, HD2643, HUW 510, HUW 234, HW 2045, DBW 14, NW 2036 and HP 1744 for the NEPZ.

MECHANISM OF HEAT TOLERANCE

The mechanism for heat tolerance can be understood by investigating the physiological responses of tolerant and susceptible genotypes at various development, stages of plant especially during grain filling stage of wheat. Plants adopt various mechanisms to survive under high temperature condition viz., morphological phenological and adaptations and avoidance or acclimation responses such as changing the leaf angle, cooling through transpirational system, and membrane alterations in lipid compositions. As per earlier studies, smaller yield losses in different plants correlated with early maturity under high temperature which indicates earliness as one of the escape mechanisms (Adams 2001). Plants experience many types of environmental stresses at different growth stages and their mechanisms of response may vary at the tissue level (Queitsch et al., 2000). The initial stress signals in terms of ionic effects or membrane composition triaaers downstream sianalina processes and transcriptional control, which lead to the activation of stressresponsive mechanisms and creation of homeostasis through protection and repair of damaged proteins and membranes (Bohnert et al., 2006). Several key tolerance mechanisms, including osmolyte accumulation and compartmentalization, ROS scavengers, late embryogenesis, abundant proteins and factors involved in signaling process, and gene level regulation are major drivers to counteract the heat stress effect (Wang 2004). The tolerance process begins with the sensing of heat stress, their signaling, and production of many metabolites that enable the plant to counteract the ill effect of high temperature stress. The ROS scavengers like CAT, SOD, POX, APX, and ascorbic acid are also important players in the tolerance mechanism of heat stress (Maestri et al., 2002). Furthermore, at the molecular level, the induction and expression of heat proteins (HSPs) is highly shock correlated with the thermos-tolerance mechanism of the plant. HSPs act as a molecular chaperone and provide protection to the cellular machinery. Many studies pointed out the role of HSPs in various stress responsive mechanisms (Wang 2004).

CONCLUSION AND FUTURE OUTLOOK

It is obvious that heat stress negatively influenced the wheat plant's physiology vield. and Furthermore, despite the vital need to identify heat tolerance genotypes and improve the heat tolerance level in wheat, a very limited number of heattolerant wheat varieties have been developed. Moreover, due to the complex nature of heat stress, the physiological and molecular mechanism happening inside plant system under heat stress is still not very clear. Therefore, it is verv physiological important that and molecular variations for the trait be identified and characterized efficiently in order to introduce them in a breeding program. Furthermore, knowledge on the molecular physiology of the plant heat response can play an important role in speeding up the breeding programs for heat tolerance in wheat. QTLs identified in various mapping studies can, once validated, be exploited in breeding

program to develop heat tolerant wheat genotypes. However, a major finding is that the plant heat stress response is highly complex, with challenges that may be tissue-, developmental stage specific. Thus, heat tolerance should not be regarded as a solitary trait and, as such, it is important to develop a comprehensive approach instead of a single, general strategy for generating heat tolerant wheat genotypes.

REFERENCES

- Arnon S, Fernandez JA, Franco JA, Torrecillas Α, Alarc 'on 11. S'anchez-Blanco MJ (2004).Effects water stress of and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticusplants. Sci. Hortic. 101: 333-342.
- Adams SR, Cockshull, KE, Cave CRJ (2001).Effect of temperature on the growth and development of tomato fruits. *Ann. Bot.* 88: 869– 877.
- Alka S, Khanna-Chopra R (1995). Influence of temperature on germination and seedling growth and its relationship with amylase activity and respiration in wheat varieties differing in temperature tolerance. *In. J. Exp. Biol.* 33: 775-779.
- Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, BattchikovaN, Cournac L, Aro E-M (2013). Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. *Proc. Natl. Acad. Sci.* U.S.A. 110: 4111-4116.
- Almeselmani M, Abdullah F, Hareri F, Naaesan M, Ammar MA, Kanbar OZ (2011) Effect of drought on different physiological characters and yield component in different

Syrian durum wheat varieties. *J. Agric. Sci*.2011; 3:127-33.

- Almeselmani Μ, Deshmukh PS, V (2012).Effect of Chinnusamy prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticumaestivum L.) varieties differing in their thermotolerance. Plant Stress 6:25–32
- Anonymous (2007). Vision 2025. Perspective plan, Directorate of Wheat Research, Indian Council of Agricultural Research, Karnal, India. pp. 63.
- Asada K (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 50:601-639.
- Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. *Photosynthetica* 51:163–190.
- Asseng S, Ewert F, Martre P, Rötter RP, Lobell, DB (2015). Rising temperatures reduce global wheat production. *Nat. Clim. Change* 5:143-147.
- Banowetz GM, Ammar K, Chen DD (1999).Temperature effects on cytokinin accumulation and kernel mass in dwarf wheat. *Ann. Bot.* 83: 303–307.
- Bansal R, Srivastava JP (2012) Antiodative defense system in pigeon-pea roots under water logging stress. *Acta Physiol. Plant.* 34: 515-522.
- Basha E, Lee GJ, Demeler B, Vierling E (2004).Chaperone activity of cytosolic small heat shock proteinsfrom wheat. *Eur. J. Biochem.* 271: 1426-1436.
- Basha EM, Waters ER, Vierling E (1999). *Triticumaestivumc* DNAs homologous to nuclear-encoded mitochondrion-localized small heat shock proteins. *Plant Sci*.141: 93-103.
- Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T, (2012). Detection of two major grain yield QTL in

bread wheat (*Triticumaestivum* L.) under heat, drought and high yield potential environments. *Theor. Appl. Genet.* 125: 1473-1485.

- Berenguer CL, Alcaraz CF, Carlos M (2004). Involvement ofsugars in the response of pepper plants to salinity: Effect of calcium application. *Asian J. Plant Sci.* 3: 455-462.
- Bhatia S, Singh R (2000). Calciummediated conversion of sucrose to starch in relation to the activities of amylases and sucrose-metabolizing enzymes in sorghum grains raised through liquid culture. *Ind. J. Biochem. Biophysics* 37: 135-139.
- Bhatia S, Asthir B (2014).Calcium mitigates heat stress effect in wheat seeding growth by altering carbohydrate metabolism. *Ind. J. Plant Physiol.* 19(2):138-143.
- Bhattacharjee S (2008). Calciumdependent signaling pathway in theheat induced oxidative injury in *Amaranthuslividus*. *Biol. Plant.* 52: 137-140.
- Bhattacharjee S (2013). Heat and chilling induced disruption of redoxhomeostasis and its regulation by hydrogen peroxide in germinating rice seeds (*Oryza sativa* L., cultivar *Ratna*). *Physiol. Mol. Biol. Plants* 19:199-207.
- Bita CE, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. *Plant Sci.* 4: 1-18
- Blum A, Sinmena B (1994). Wheat seed endosperm utilization under heat stress and its relation to thermotolerance in autotrophic plant. *Field Crop Res.* 37: 185-191.
- Blum Å, Klueva N, Nguyen HT (2001). Wheat cellular thermo tolerance is related to yield under heat stress. *Euphytica.* 117: 117–123.
- Blum, A. (1998). Plant breeding for stress environments. CRC Press Inc., Boca Raton, Florida. pp. 223.

- Bohnert HJ, Gong Q, Li P, Ma S (2006). Unraveling abiotic stress tolerance mechanisms — getting genomics going. *Curr.Opin. Plant Biol.* 9: 180–188.
- Bowen J, Michael LY, Plummer KIM, Ferguson IAN (2002). The heat shock response is involved in thermo tolerance in suspensioncultured apple fruit cells. *J. Plant Physiol.*159: 599-606.
- Camejo D, Rodriguez P, Morales MA, Dell'amico JM, Torrecillas Α, Alarc´on JJ (2005). High effects temperature on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162: 281-289.
- Caverzan A, Casassola A, Brammer SA (2016). Antioxidant responses of wheat plants under stress. Genet Mol Biol. 39:1–6.
- Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. *Genet. Mol. Biol.* 35:1011-1019.
- Chaitanya KV, Sundar D, Reddy AR (2001). Mulberry leaf metabolism under high temperature stress. *Biol.Plant.* 44: 379-384.
- Chaturvedi P, Doerfler H, Jegadeesan S, Ghatak A, Castillejo MA, Wienkoop S, Egelhofer V, Firon N, Weckwerth W (2015). Heat-treatmentresponsive proteins in different developmental stages of tomato pollen detected by targeted mass accuracy precursor alignment (tMAPA). J. Proteome Res.14(11): 4463-4471.
- Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012). The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. *Plant Cell Environ*. 35: 1912-1931.

- ChenY-E, Zhang C-M, Sub Y-Q, Maa J, Zhang Z-W, Yuan M, Zhang H-Y, Yuan S (2017). Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. *Environ. Exp. Bot.* 135: 45-55.
- Cheng X, Chai L, Chen Z, Xu L, Zhai H, Zhao A, Peng H, Yao Y, You M, Sun Q (2015). Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (*Triticumaestivum* L). *BMC Genet*.16: 127.
- Cossani CM, Reynolds MP (2012). Physiological traits for improving heat tolerance in wheat. *Plant Physiol.* 160: 1710-1718.
- Crafts-Brandner SJ, Law RD (2000). Effect of heat stress on the inhibition and recovery of the ribulose-1,5bisphosphate carboxylase/oxygenase activation state. *Planta* 212:67-74.
- Danna CH, Bartoli CG, Sacco F, Ingala LR, Santa-Maria GE, Guiamet JJ, Ugalde RA (2003). Thylakoidbound ascorbateperoxidase mutant exhibits impaired electron transport and photosynthetic activity. *Plant Physiol*. 132:2116-2125.
- De Storme N, Geelen D (2014). Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. *Front. Plant Sci.* 5:138-160.
- Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. *Environ. Res. Lett.* 9:1-13.
- Deshmukh PS, Sairam RK, Shukla DS (1991).Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes. *In. J. Plant Physiol.* 34:89–91.
- Dwivedi SK, Kumar S, Prakash V (2015). Effect of late sowing on yield and yield attributes of wheat genotypes

in Eastern Indo Gangetic Plains. *J. Agrisearch*. 2(4): 304-306

- Dwivedi SK, Rao KK, Prakash V (2017a).Adoption of heat tolerant wheat varieties. *Indian Farm.*. 67(09): 3-4.
- DwivediSK,Basu S, Kumar S, Kumar G, Prakash V, Kumar S, Mishra JS, Bhatt BP, Malviya N, Singh GP, Arora A (2017b). Heat stress induced impairment of starch mobilisation regulates pollen viability and grain yield in wheat: Study in Eastern Indo-Gangetic Plains. *Field Crop Res.* 206: 106-114.
- FAO (2007). Statisticaldatabase; Food and agriculture data. http://www.faostat.fao.org.
- Farooq M, Bramley H, Palta JA, Siddique KHM (2011). Heat stress in wheat during reproductive and grainfilling phases. *Critical Reviews in Plant Sciences*. 30: 1-17,
- Feder ME, Hofmann GE(1999), Heat-shock proteins, molecular chaperones and stress response: evolutionary and ecological physiology. *Annu. Rev. Physiol.* 61: 243-282.
- Ferris R, Ellis RH, Wheeler TR, Hadley P (1998). Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. *Ann. Bot*.82: 631-639.
- Fischer RA, Byerlee D, Edmeades GO (2014).Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research, Canberra. 634 pp.
- Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009). Transcriptional profiling of maturing tomato (Solanumlycopersicum L.) microspores reveals the involvement of heat shock ROS proteins, scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot. 60:3891-3908.

- Frieler K, Schauberger B, Arneth A, Balkovic J, Chryssanthacopoulos J (2017). Understanding the weather signal in national crop-yield variability. *Earth's Future* 5: 605– 616.
- Gibson, L.R., Paulsen, G. M (1999). Yield components of wheat grown under high temperature stress during reproductive growth. *Crop Sci.*39: 1841-1846.
- Gill SS, Tuteja N(2010).Reactive oxygen species and antioxidantmachinery in abiotic stress tolerance in crop plants.*Plant Physiol. Biochem.* 48: 909-930.
- Gratao PL, Polle A, Lea PJ, Azevedo RA (2005). Making the life of heavy metal-stressed plants a little easier.*Funct. Plant Biol.* 32: 481-494.
- Guilioni L, Wery J, Tardieu F (1997). Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs? *Ann. Bot.* 80: 159-
- Gupta NK, Gupta S, Kumar A (2000). Cytokinin application increases cell membrane and chlorophyll stability in wheat (*Triticumaestuvum* L.). *Cereal Res. Commu*. 28: 287–291.
- Hall AE (1992). Breeding for heat tolerance.*Plant Breed. Rev.* 10: 129-168.
- Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen HT, Klein P, Klein R, Mullet J (2007). Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. *J. Exp. Bot.*58: 327-338.
- Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J MolSci 14:9643-9684. Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation

in a susceptible cultivar. *J Plant Sci* 172:1113-1123.

- Hendrick JP, Hartl F-U (1993). Molecular chaperone functions of heat shock proteins. *Annu. Rev. Biochem*. 62: 349-384.
- Howarth CJ (2005). Genetic improvements of tolerance to high temperature. In: M. Ashraf, PJC Harris, eds., Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York.
- IPCC (2014). Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
- IPCC (2007). In: R.K. Pachauri and A. Reisinger (ed.) Climate change (2007). Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland.
- Joshi AK., Chand R, Arun B, Singh RP, Ortiz R (2007). Breeding crops for reduced-tillage management in the intensive, rice-wheat systems of south Asia. *Euphytica* 153:135-151.
- Joshi CP, Nguyen HT (1996). Differential display-mediated rapid identification of different members of a multigene family, HSP16.9 in wheat. *Plant Mol. Biol.* 31: 575-584.
- Karim MA, Fracheboud Y, Stamp P (1997). Heat tolerance of maize with reference of some physiological characteristics. *Ann. Bangladesh Agri.* 7: 27-33.
- Kaushal N, Bhandari K, Siddique KHM, Nayyar H (2016) Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to

improve heat tolerance. *Cogent Food Agric.* 2:1134380.

- Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. *Curr. Sci.*88: 424-43.
- Kepova KD, Holzer R, Stoilova LS, Feller U (2005). Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubiscoactivase in wheat leaves. *Biol. Plant.* 49: 521-525.
- Krasensky J, Jonak C (2012). Drought, salt, and temperature stress induced metabolic rearrangements and regulatory networks. *J Exp Bot.* 63:1593-1608. doi:10.1093/jxb/err460.
- Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. *Science* 323: 1360-1363.
- Kumar RR, Sharma SK, Goswami S, Singh K, GadpayleKA, Singh GP, Pathak H and Rai RD (2014).Transcript profiling and biochemical characterization of mitochondrial superoxidedismutase (mtSOD) in wheat (*Triticumaestivum*) under different exogenous stresses. *Aust. J. Crop Sci.* 7:414-424.
- Kumar RR, GoswamiS, SharmaSK, Singh K, GadpayleKA, Singh SD, PathakH, RaiRD (2013). Ascorbic acid at pre-anthesismodulate the thermotolerance level of wheat (*Triticumaestivum*) pollen under heat stress. *J. Plant Biochem. Biotechnol.* 23: 293-306.
- Kushwaha SR, Deshmukh PS, Sairam RK, Singh MK (2011). Effect of high temperature stress on growth, biomass and yield of wheat

genotypes. *In. JournalPlant Physiol.* 16: 93-97.

- Larkindale J, Huang B (2004). Thermotolerance and antioxidant systems in Agrostisstoloifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol. 161:405-413.
- Lee SLJ, Warmke HE (1979).Organelle size and number in fertile and Tcytoplasmic male-sterile corn. *Am. J. Bot.* 66:141-148.
- Li H, Xu H, Zhang P, Gao M, Wang D, Zhao H (2016). High temperature effects on D1 protein turnover in three wheat varieties with different heat susceptibility. *Plant Growth Regul.*81: 1-9.
- Li SP, Chang XP, Wang CS, Jing RL (2013). Mapping QTL for heat tolerance at grain filling stage in common wheat. *Sci. Agric. Sin.* 46: 2119-2129 (in Chinese with English abstract).
- Li SP, Chang XP, Wang CS, Jing RL (2012). Mapping QTLs for seedling traits and heat tolerance indices in common wheat. *Acta Bot. Boreali-Occidential Sin.* 32: 1525-1533.
- Liu B, Asseng S, Liu L, Tang L, Cao W, Zhu Y (2016). Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. *Glob. Change Biol.* 22:1890-1903.
- Liu X, Huang B (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. *Crop Sci.* 40: 503-510.
- Machado S, Paulsen GM (2001). Combined effects of drought and high temperature on water relations of wheat and sorghum.*Plant Soil* 233: 179-187.
- Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. *Plant Mol. Biol.* 48:667-681.
- Marina ST, Igor MA, Vladimir VK (1999). Calcium isinvolved in regulation of

the synthesis of HSPs in suspension: Cultured sugar beet cell under hyperthermia. *Physiol.Plant*.105: 67-73.

- Mahrookashani A, Siebert S, Hüging H, Ewert F (2017).Independent and combined effects of high temperature and drought stress around anthesis on wheat. J. Agron. Crop Sci. 203: 453-463.
- Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB (2010). QTL associated with heat susceptibility index in wheat (*Triticumaestivum*, L.) under short-term reproductive stage heat stress. *Euphytica*174:423-436.
- Misson L, Limousin J, Rodriguez R, Letts MG (2010). Leaf physiological responses to extreme drought sin Mediterranean *Quercus ilex* forest. *Plant Cell Environ*. 33: 1898-1910.
- Mittler R (2002). Oxidative stress, antioxidants and stress tolerance.*Trends Plant Sci.* 7:405-410.
- Mittler R, Vanderauwera S, Gollery M and Van Breusegem F (2004).Reactive oxygen gene network of plants.*Trends Plant Sci*. 9:490-498.
- Mondal S, Mason RE, Huggins T, Hays DB (2015). QTL on wheat (*Triticumaestivum* L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. *Euphytica* 201: 123-130.
- Mondal S, Singh RP, Crossa J, Huerta-Espino J, Sharma I, Chatrath R, Singh GP, Sohu VS, Mavi GS, Sukaru VSP, Kalappanavarg IK, Mishra VK, Hussain M, Gautam NR, Uddin J, Barma NCD, Hakim A, Joshi AK (2013). Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in south Asia. *Field Crops Res.* 151:19-26.
- Moral Garcíadel, Rharrabti Y, Villegas, D, Royo C (2003).Evaluation of grain

yield and its components in durum wheat under Mediterranean conditions: an ontogenic approach *Agron. J.* 95: 266-274.

- Nakamoto H, Hiyama T (1999). Heatshock proteins and temperature stress. In: M. Pessarakli, ed., Handbook of plant and crop stress. Marcel Dekker, New York, pp. 399-416.
- Ni Z, Li H, Zhao Y, Peng H, Hu Z, Xin M, Sun Q (2018). Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. *Crop J*. 6: 32-41.
- Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Ortiz-Monasterio JI, (2008). Reynolds М Climate change: can wheat beat the heat? Agric. Ecosys. Environ. 126:46-58. Oshino T, Miura S, Kikuchi S, Hamada K, Yano K, Watanabe M, Higashitani А (2011) Auxin depletion in barley plants under hiah temperature conditions proliferation in represses DNA organelles and nuclei via transcriptional alterations. Plant Cell Environ. 34: 284-290.
- Oukarroum A, Strasser RJ, SchanskerG (2012).Heat stress and photosyntheticelectron transport chain of the lichen Parmelinatiliacea (Hoffm.) Ach.in the dryand the wet state: differences and similarities with the heat stress response of higher plants. Photosynth. Res. 111: 303-314.
- Pagliano C, Saracco G, Barber J (2013). Structural, functional and auxiliary proteins of photosystem II. *Photosynth. Res.* 116: 167-188.
- Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK(2012).QTL mapping of terminal heat tolerance in hexaploid wheat (*T. aestivum* L.). *Theor. Appl. Genet.* 125: 561-575.
- Pareek A, Singla, SL, Grover A (1998). Proteins alterations associated with

salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (*Oryza sativa* L.) cultivar. *Curr. Sci.* 75: 1023-1035.

- Prasad PVV, Pisipati S R, Ristic Z, Bukovnik U, Fritz AK (2008). Impact of nighttime temperature on physiology and growth of spring wheat. *Crop Sci.*48: 2372-2380.
- Queitsch C, Hong SW, Vierling, E, Lindquest S (2000). Heat shock protein 101 plays a crucial role in thermotolerance in *Arabidopsis*. *Plant Cell*, 12: 479-492.
- Ray DK, Gerber JS, MacDonald GK, West PC, Lobell DB (2015). Climate variation explains a third of global crop yield variability. *Nat. Commun.* 6, 5989.
- Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA (1994). Physiological and morphological traits associated with spring wheat 1125 yield under hot, irrigated conditions. *Aust. J. Plant Physiol.*21: 717-730.
- Saini HS, Sedgley M, Aspinall D (1984).Developmental anatomy in wheat of male-sterility induced by heat-stress, water deficit or abscisic-acid. *Aust. J. Plant Physiol*. 11:243-253.
- Sairam RK, Srivastava GC, Saxena DC (2000). Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. *Biologia Plant*. 43: 245-251
- Sairam RK, Tyagi A (2004). Physiology and molecular biology of salinity stress tolerance in plants. *Curr. Sci.* 86: 407-421.
- Sairam RK, Srivastava GC, Saxena DC (2000). Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. *Biol. Plant*. 43(2): 245-251.

- Sakamoto A, Murata N (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. *Plant Cell Environ*. 25: 163-171.
- Salvucci, ME, Crafts-Brandner SJ (2004). Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. *Physiol. Plant.* 120: 179-186.
- Savchenko GE, Klyuchareva EA, Abrabchik LM, Serdyuchenko EV (2002). Effect of periodic heat shock on the membrane system of etioplasts.*Russ. J. Plant Physiol.* 49: 349-359.
- Scandalios JG (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. *Braz. J. Med. Biol. Res.* 38: 995-1014.
- Selinski J, Scheibe R (2014). Pollen tube growth: where does the energy come from? *Plant Signal Behav*. 9: e977200.
- Shao H, Chu L, Shao M, Li S, Yao J (2008). Bioengineering plant resistance to abiotic stresses by the global calcium signal system. *Biotech.Advances.* 26: 503-510.
- Shi W, Wen J, Lutz S (2012). Pollen morphology of the Maddenia clade of Prunus and its taxonomic and phylogenetic implications. *J. Syst. Evol.* 51: 164-183.
- Simoes-Araujo JL, Rumjanek NG, Margis-Pinheiro M (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. *Braz. J. Plant Physiol.* 15: 33-41.
- Slesak I, Libik M, Karpinska B, Karpinski S and Miszalski Z(2007).The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol. 5:39-50.
- Suzuki N, Miller G, Morales J, Shulaev V, Torres MA(2011). Respiratory burst oxidases: the engines of ROS

signaling. *Curr.Opin. Plant Biol.* 14:691-699.

- Taiz L, Zeiger E (2006). Plant physiology. Sinauer Associates Inc. Publishers, Massachusetts.
- Talukder SK, Babar MA, Vijayalakshmi K, Poland J, Prasad PVV, Bowden R, Fritz A (2014). Mapping QTL for the traits associated with heat tolerance in wheat (*Triticumaestivum* L.), *BMC Genet*. 15: 1-13.
- Tashiro T, Wardlaw I (1989). A comparison of the effect of high temperature on grain development in wheat and rice.*Ann. Bot.* 64: 59-65.
- Tebaldi C, Hayhoe K, Arblaster JM, Meehl GE (2006). Climate change, Going to the extremes, An inter comparison of model simulated historical and future changes in extreme events. *Clim. Change* 79: 185-211.
- Teixeira EI, Fischer G, Velthuizen HV, Walter C, Ewert F (2013). Global hotspots of heat stress on agricultural crops due to climate change. *Agric. Meteorol.* 170:206-215. doi:10.1016/j.agrformet.2011.09.0
 - 02.
- Thomelin P, Bonneau J, Taylor J, Choulet F, Sourdille P, Langridge P (2016). Positional cloning of a QTL, qDHY.3BL, on chromosome 3BL for drought and heat tolerance in bread wheat. Proceedings of the Plant and Animal Genome Conference (PAGXXIV), January 9-13, San Diego, CA,USA.
- Todorov DT, Karanov EN, Smith AR, Hall MA (2003). Chlorophyllase activity and chlorophyll content in wild type and *eti* 5 mutant of *Arabidopsis thaliana* subjected to low and high temperatures. *Biol. Plant.* 46: 633-636.
- Tsukaguchi T, Kawamitsu Y, Takeda, H, Suzuki K, Egawa Y (2003).Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive

cultivars of snap bean (*Phaseolus vulgaris* L.). *Plant Prod. Sci.* 6: 4-27.

- Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017). Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. *New Phytol*. 214: 271-283.
- Viswanathan C, Khanna-Chopra R (2001). Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (*Triticumaestivum* L.) varieties differing in grain weight stability. J.Agron. Crop Sci. 186: 1-7.
- Vollenweider P, Gunthardt-Goerg MS (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. *Environ. Pollut.* 137: 455-465.
- Vu JCV, Gesch RW, Pennanen AH, Allen LHJ, Boote KJ, Bowes G (2001). Soybean photosynthesis, Rubisco and carbohydrate enzymes function at supra-optimal temperatures in elevated CO₂. J. Plant Physiol. 158: 295-307.
- Wahid A, Close TJ (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. *Biol. Plant.* 51: 104-109.
- Wahid A, Gelani S, Ashraf M, Foolad MR (2007). Heat tolerance in plants: an overview. *Environ. Exp. Bot.* 61, 199-223.
- Wang JB, Li RQ (1999). Changes of Ca²⁺ distribution inmesophyll cells of pepper under heat stress. *Acta Hortic. Sinica* 26: 57-58.
- Wang LJ, Li SL (2006). Salicylic acidinduced heat or cold tolerance in relation to Ca²⁺ homeostasis and antioxidant systems in young grape plants.*Plant Sci.* 170: 685-694.
- Wang W, Vinocur B, Shoseyov O, Altman A (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. *Trends Plant Sci.*, 9: 244-252.

- Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W (2011) Pre-anthesis high temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol 168:585–593.
- Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004). Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. *Plant Cell Environ.* 27: 717-724.
- Witcombe JR, Virk DS (2001) Number of crosses and population size for participatory and classical plant breeding. *Euphytica* 122:451-462.
- Xiong L, Lee H, Ishitani M, Zhu JK (2002). Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in *Arabidopsis*. J. *Biol. Chem.* 277: 8588-8596.
- Xu S, Li J, Zhang X, Wei H, Cui L (2006).Effects of heat acclimation pretreatment changes on of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two species cool-season turfgrass under heat stress. Environ. Exp. Bot. 56: 274-285.
- Xue GP, Sadat S, Drenth J, McIntyre CL (2014).The heat shock factor family from *Triticumaestivum*inresponse to heat and other major abiotic stresses and theirrole in regulation of heat shock protein genes.*J. Exp. Bot.* 65(2): 539-557.
- Yamada M, Hidaka T, Fukamachi H (1996). Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. *Sci. Hortic*.39-48.
- Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008).Quality control of photosystem II: impact of light and heat stress. *Photosynth. Res.* 98: 589-608.
- Yamashita A, Nijo N, Pospisil P, Morita N, Takenaka D, Aminaka R,

Yamamoto Y (2008). Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. *J. Biol. Chem.* 283: 28380-28391.

- Yamori W, Noguchi K, Hanba YT, TerashimaI (2006a). Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. *Plant Cell Physiol*. 47:1069-1080.
- Yamori W, Suzuki K, Noguchi K, Nakai M, TerashimaI (2006b). Effects of Rubiscokinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. *Plant Cell Environ*. 29: 1659-1670.
- Yang J, Sears RG, Gill BS, Paulsen GM (2002). Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. *Euphytica* 125: 179–188.
- Young LW, Wilen RW, Bonham-Smith PC (2004). High temperature stress of *Brassica napus* during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. *J. Exp. Bot.* 55: 485-495.
- Zampieri M, Ceglar A, Dentener F, Toreti A (2017). Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. *Environ. Res. Lett.* 12, 64008.
- Zhang YC, Chen YQ (2013). Long noncoding RNAs: new regulators in plant development. *Biochem.Biophys. Res. Commun.* 436: 111-114.