SABRAO Journal of Breeding and Genetics 47 (4) 493-501, 2015

GENOTYPIC DIVERSITY OF TRAITS RELATED TO NITROGEN FIXATION IN VALENCIA PEANUT GERMPLASM

S. MAHAKOSEE¹, S. JOGLOY^{1,2*}, N. VORASOOT¹, B. SURIHARN¹, N. PUPPALA³ and A. PATANOTHAI¹

¹Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

²Peanut and Jerusalem Artichoke Improvement for Functional Food Research Group, Khon Kaen University, Muang, Khon Kaen, Thailand

³Agricultural Science Center at Clovis, New Mexico State University, Clovis, New Mexico 88101, USA

*Corresponding author's email: sjogloy@gmail.com

Co-authors' email addresses: nvorasoot1@gmail.com, bsuriharn@gmail.com, npuppala@ad.nmsu.edu, aran@kku.ac.th

SUMMARY

Peanut can fix atmospheric nitrogen by symbiotic relationship with cowpea-type of rhizobium. Traits related to nitrogen fixation may be useful as select criteria for high nitrogen fixation. Thus the objective of this study was to evaluate 130 accessions of Valencia peanut for traits related to nitrogen fixation including nodule dry weight, biomass and harvest index. The new germplasm of 125 Valencia peanut accessions from New Mexico State University and International Crops Research Institute for Semi-Arid-Tropics (ICRISAT) and the 4 varieties commercially available peanut of Thailand consisting of 3 Valencia peanuts, 1 Spanish and 1 Virginia were planted in randomize complete block design (RCBD) with 4 replications during February to June 2012 and 2013. Nodule dry weight ranged from 0.16 to 0.56 g plant⁻¹ with mean of 0.31 g plant⁻¹, and biomass productions ranged from 58.38 to 97.45 g plant⁻¹ with mean value of 74.56 g plant⁻¹. Pod yields showed a wide range from 15.00 to 35.84 g plant⁻¹ with mean value of 24.39 g plant⁻¹, whereas harvest index values ranged from 0.23 to 0.45 with mean value of 0.33. Base on traits related to nitrogen fixation (nodule dry weight, biomass and harvest index), peanut accessions were separated into 4 groups.

Key words: Nodule dry weight, groundnut (Arachis hypogaea L.), biomass production

Key findings: Diversity of nitrogen fixation in Valencia peanut germplasm.

Manuscript received: November 8, 2014; Decision on manuscript: April 12, 2015; Manuscript accepted: May 18, 2015. © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2015

Communicating Editor: Bertrand Collard

INTRODUCTION

Seventy eight percent of the total nitrogen pool is available as nitrogen gas in the atmosphere. However, gaseous nitrogen is not directly useful to plants and plants require sufficient mineral nitrogen for growth and development. Gaseous nitrogen can be transformed into mineral nitrogen by lighting, nitrogen fixation by free living organisms, industrial fertilizer production and many systems of symbiotic association between nitrogen fixing organisms and many plant species especially leguminous species such as beans, soybean and peanut (Giller, 2001).

Peanut (Arachis hypogaea L.) is traditionally grown under rainfed conditions with erratic rainfall and low soil fertility that affect to growth and peanut yield. Peanut can fix nitrogen of about 80 - 150 kg N ha⁻¹ (Giller et al., 1987; Toomsan, 1990). Nitrogen from peanut residues can be beneficial to subsequent crops in a cropping system (McDonagh et al., 1993, 1995; Toomsan et al., 1995). Association of rhizobium and root nodules of peanut can fix atmospheric nitrogen into nitrogen compounds that are available for peanut. However, the efficiency of nitrogen fixation in peanut depends on peanut varieties, rhizobium strains and the interaction between peanut variety and rhizobium strain (McDonagh et al., 1993).

Measurement of fixed nitrogen is a direct means for determining nitrogen fixing ability and accomplished only in a laboratory where complicated equipment is installed. Several traits have been identified and used as selection criteria and surrogate traits for high nitrogen fixation such as nodule dry weight, biomass production, leaf color score and nitrogenase activity. Strong and positive correlations were found between nitrogen fixation, total nitrogen and total dry matter (Pimratch *et al.*, 2004).

The new peanut germplasm of Valencia type from New Mexico State University and the International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT) have not been evaluated for their nodulation efficiency and nitrogen fixation. Valencia peanut type (sub species *fastigiata*) has erect canopy with sequential branching pattern. Leaves of Valencia peanut are pale green and the leaves are larger than those of Virginia type. Valencia peanut has variations in pod size, seeds per pod and seed testa color. Valencia peanut type are early maturing, sweet taste and generally with 3 or 4 kernels per pod (Purseglove, 1977). Thus the objective of this study was to evaluate 130 accessions of Valencia peanut for traits related to nitrogen fixation including nodule dry weight, biomass and harvest index. The characterization of new germplasm sources for economically important traits is very important for breeding and effective utilization of the germplasm.

MATERIALS AND METHODS

Crop management and experimental design

The experiment was conducted at the Field Crop Research Station of Khon Kaen University, Khon Kaen, Thailand (lat 16°, 28' N, long 102° 48' E, 200 m above mean sea level). One hundred and thirty peanut accessions consisting of 125 accessions of Valencia peanut from New Mexico State University and the International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), 3 peanut varieties (KS1, KS2 and KK4), one Spanish peanut type (KKU40) and one Virginia peanut type (KKU 60) commercially available in Thailand were used in this study (Table 1). The experiment was laid out in a randomized complete block design with 4 replications during February to June 2012 and 2013. Plot size was $2 \times 5 \text{ m}^2$ and the spacing was 50 cm between rows and 20 cm between plants within rows.

Seeds were treated with captan (3a,4,7,7a-tetrahydro-2-[(trichloromethyl) thio]-1H-isoindole-1,3 (2H)-dione) at the rate of 5 g kg⁻¹ seeds before planting to control fungal diseases. Seeds were planted 3-4 seed hill⁻¹ and pre-emergence weeds were controlled by (2-cholro-2',6'-diethyl-Nalachlor (methoxymethyl) acetanilide 48%, w/v. emulsifiable concentrate) at the rate of 3 L ha⁻¹ planting after application of at water. Bradyrhizobium inoculation (mixture of strains THA 201 and THA 205; Department of Ministry of Agriculture Agriculture. and Thailand) Cooperatives, Bangkok, was accomplished by applying a water-diluted peat-based commercial inoculum of *Bradyrhizobium* on the rows of peanut at 2 day after planting. At 10-15 DAP, peanut seedlings were thinned to obtain 2 plants per hill and weeds were controlled by hand weeding. Chemical fertilizer N:P₂O₅:K₂O was applied the rate of 0, 56.25, 37.5 kg ha⁻¹, respectively. Gypsum (CaSO₄) at the rate of 312 kg ha⁻¹ was applied at 40-45 DAP after weeding control. Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-vlmethylcarbamate 3% granular) was used at pod setting stage to protect the crop from the subterranean ants (Dorylus orientalis).

Entry No Accession Source		Entry No	Accession	Source	Entry No Accession		Source	
<u>1</u>	PI468225	New Mexico	<u>Lintry 140.</u> 45	PI493325	New Mexico	<u>2001</u>	Valencia - C	New Mexico
2	DI475013	New Mexico	46	DI/03330	New Mexico	00	M C Pap	New Mexico
3	PI475921	New Mexico	40	PI493340	New Mexico	91	ICG 115	India
4	PI475925	New Mexico	47	PI493344	New Mexico	92	ICG 297	Mauritius
5	PI476074	New Mexico	40	PI493360	New Mexico	93	ICG 332	Brazil
6	PI476078	New Mexico	50	PI493373	New Mexico	94	ICG 397	USA
7	PI476079	New Mexico	51	PI493382	New Mexico	95	ICG 1142	Benin
8	PI476089	New Mexico	52	PI493405	New Mexico	96	ICG 1274	Indonesia
9	PI493381	New Mexico	53	PI493415	New Mexico	97	ICG 1399	Malawi
10	PI493521	New Mexico	54	PI493442	New Mexico	98	ICG 2738	India
11	PI493536	New Mexico	55	PI493446	New Mexico	99	ICG 3673	Korea
12	PI493562	New Mexico	56	PI493451	New Mexico	100	ICG 3681	USA
13	PI497447	New Mexico	57	PI493458	New Mexico	101	ICG 4670	Sudan
14	PI497459	New Mexico	58	PI493461	New Mexico	102	ICG 5221	Argentina
15	PI501293	New Mexico	59	PI493470	New Mexico	103	ICG 5475	Kenva
16	PI501985	New Mexico	60	PI493484	New Mexico	104	ICG 5609	Sri Lanka
17	PI536300	New Mexico	61	PI493501	New Mexico	105	ICG 6022	Sudan
18	PI536307	New Mexico	62	PI493523	New Mexico	106	ICG 6201	Cuba
19	PI599612	New Mexico	63	PI493565	New Mexico	107	ICG 6646	Unknown
20	PI602494	New Mexico	64	PI493566	New Mexico	108	ICG 6888	Brazil
21	PI259580	New Mexico	65	PI493584	New Mexico	109	ICG 7181	India
22	PI259601	New Mexico	66	PI493612	New Mexico	110	ICG 8106	Peru
23	PI306361	New Mexico	67	PI493624	New Mexico	111	ICG 8517	Bolivia
24	PI314980	New Mexico	68	PI493629	New Mexico	112	ICG 9315	USA
25	PI315612	New Mexico	69	PI493630	New Mexico	113	ICG 10092	Zimbabwe
26	PI338337	New Mexico	70	PI493660	New Mexico	114	ICG 10474	Cuba
27	PI365564	New Mexico	71	PI493666	New Mexico	115	ICG 10554	Argentina
28	PI390432	New Mexico	72	PI493688	New Mexico	116	ICG 10566	Congo
29	PI406718	New Mexico	73	PI493810	New Mexico	117	ICG 10890	Peru
30	PI407451	New Mexico	74	PI493816	New Mexico	118	ICG 111444	Argentina
31	PI429427	New Mexico	75	PI493865	New Mexico	119	ICG 13856	Uganda
32	PI429430	New Mexico	76	PI494019	New Mexico	120	ICG 13858	Uganda
33	PI493507	New Mexico	77	PI497642	New Mexico	121	ICG 14106	Zaire
34	PI493514	New Mexico	78	DC 2120 (S3873)	New Mexico	122	ICG 14127	Zaire
35	PI493518	New Mexico	79	DC 2440 (S3897)	New Mexico	123	ICG 14710	Cameroon
36	PI502023	New Mexico	80	S-3653	New Mexico	124	ICG 15042	Unknown
37	PI508278	New Mexico	81	S-3881	New Mexico	125	ICG 15309	Brazil
38	PI536121	New Mexico	82	New BG	New Mexico	126	KS 1	Thailand
39	Grif13802	New Mexico	83	23322	New Mexico	127	KS 2	Thailand
40	PI501269	New Mexico	84	S-3840	New Mexico	128	KK4	Thailand
41	PI576604	New Mexico	85	Kremena	New Mexico	129	KKU 60	Thailand
42	Breeding line	New Mexico	86	NM 052565	New Mexico	130	KKU 40	Thailand
43	PI409037	New Mexico	87	Rossita	New Mexico			
44	PI468208	New Mexico	88	Valencia - A	New Mexico			

Table 1. Valencia peanut accessions and seed source.

Pests and diseases were controlled twice a month by applying carbosulfan [2-3-dihydro-2,2-dimethylbenzofuran-7-yl (dibutylaminothio) methylcar-bamate 20% w/v, water soluble concentrate] at the rate of 2.5 L ha⁻¹, methomyl [*S*-methyl-*N*-((methylcarbamoyl)oxy) thioacetimidate 40% soluble powder] at the rate of 1.0 kg/ha and carboxin [5,6-dihydro-2-methyl-1,4-oxathine-3-carboxanilide 75% wettable powder] at the rate of 1.68 kg ha⁻¹. Sprinkler irrigation

system was installed to supply water to the peanut plants from planting to harvest.

Data collection

Soil and weather parameters

Weather data were obtained from nearby meteorological station, Khon Kaen University, Khon Kaen, Thailand for both years. The soil samples at the depth 0-30 cm were analyzed to determine the physical and chemical properties (Table 2).

Traits measurement

At the final harvest, 5 plants in each plot were randomly selected. Nodules were removed from the roots and oven dried at 80 °C for 48 h or until the weight was constant and dry weight was measured. Shoot fresh weight was determined in the field. The shoot sample of 1 kg fresh weight was oven-dried at 80 °C for 48 h or until the weight was constant and dry weight was measured. The pods form harvest area (4.8 m^2) in each plot were removed from the plants and air-dried to obtain approximately 8% moisture content, and pod dry weight was determined. Biomass production was calculated based on shoot dry weight and pods dry weight (without roots). Harvest index was computed as the ratio of total pod weight to total biomass at the final harvest.

Statistical analysis and cluster analyses

Analysis of variance was performed for all characters in each year, error variances were tested for homogeneity, and the data of 2 years with variance homogeneity were combined. The analyses of variance were done using MSTAT-C package (Bricker, 1989).

A data matrix of the 130 accessions was constructed using means of nodule dry weight, biomass and HI. The cluster analysis based on Ward's method and Squared Euclidian distance was performed and the dendrogram was constructed. All calculations were performed in SAS 6.12 (SAS, 2001).

RESULTS

Meteorological conditions and soil properties

Weather conditions

The experiment was conducted under field conditions for 2 years in dry seasons 2012 and 2013. The average air temperatures were 22.4 to 34.7 °C in 2012 and 23.5 to 35.5 °C in 2013 (Figure 1). There was rainfall in both years (Figure 1a, 1b). Rainfall in the dry season 2012 was higher than in 2013 especially during late growing season (75-105 DAP). Patterns of weather conditions were similar for 2 years.

Soil properties

The soil is Yasothorn series with sand soil texture in both years, and % sand, % silt and % clay in 2012 and 2013 were 90.23, 7.79 and 1.96, and 92.58, 6.00 and 1.42, respectively (Table 2). pH values were 6.39 in 2012 and 6.63 in 2013, and electrical conductivity (EC) value was 0.04 dS m^1 in both years. Cation exchange capacity (CEC) values were 3.43 c mol/kg in 2012 and 1.88 c mol kg⁻¹ in 2013. Organic matter values and total nitrogen values were low in both years, showing nitrogen deficiency in the soil. Available P and exchangeable K were also deficient in both years, whereas exchangeable Ca values were rather high in both years (409 mg kg⁻¹ in 2012 and 391 mg kg⁻¹ in 2013), indicating that calcium was sufficient.

Table 2. Chemical and physical properties of the soil in the experimental fields of Khon Kaen University at the depth 0-30 cm in 2 years.

Soil proper- ties	pH (1:1 H ₂ 0)	EC (1:5	CEC	OM (%)	Total N (%)	Avai lable	Exchangeable		Particle size, mum (USDA system)			Soil
		H20) (dS/m)	(c mol/ kg)			P (mg/ kg)	K (mg/ kg)	Ca (mg/k g)	Sand: 2.0- 0.05 (%)	Silt: 0.05- 0.002 (%)	Clay: <0.002 (%)	tex- ture
2012	6.39	0.04	3.43	0.51	0.02	30.8	39.9	409	90.23	7.79	1.96	Sand
2013	6.63	0.04	1.88	0.49	0.01	35.6	42.5	391	92.58	6.00	1.42	Sand

EC = Electrical conductivity, CEC= Cation exchange capacity and OM = Organic matter

Figure 1 Maximum air temperatures (T-max), minimum air temperatures (T-min) (^oC), rainfall (mm), during the crop growth period of Valencia Peanut in the dry season 2012 (a) and 2013 (b)

Nodule dry weight (NDW), pod yield, biomass and harvest index

Years were significantly different for pod yield $(P \le 0.01)$ and nodule dry weight $(P \le 0.05)$, but they were not statistically different for biomass and harvest index (Table 3). Significant differences $(P \le 0.01)$ among peanut genotypes were observed for nodule dry weight, pod yield, biomass and harvest index. However, genotype \times year interactions were also significant $(P \le 0.01)$

0.01) for all characters and also contributed to lower portions than did genotype.

Peanut genotypes were also different for nodule dry weights, ranging from 0.16 to 0.56 g plant⁻¹ with mean of 0.31 g plant⁻¹ and biomass production ranging from 58.38 to 97.45 g plant⁻¹ with mean value of 74.56 g plant⁻¹ (Table 4). Peanut genotypes had a rather wide range for pod yield from 15.00 to 35.84 g plant⁻¹ with mean value of 24.39 g plant⁻¹, whereas they had rather narrow range for harvest index from 0.23 to 0.45 with mean value of 0.33.

Source	DF	Nodule dry weight	Biomass	Pod yield	HI
Years	1	0.72*	20585.7 ^{ns}	3784.8**	0.014 ^{ns}
Reps. Within Years	6	0.08	4046.7	59.2	0.060
Accessions	129	0.03**	391.2**	91.2**	0.011**
Accessions x Years	129	0.02**	320**	57.2**	0.005**
Pool error	774	0.01	164.3	9.8	0.003
CV (%)		30.8	17.18	12.76	15.47

Table 3. Mean squares for nodule dry weight, biomass, pod yield and harvest index (HI) of 130 peanut accession across 2 years.

^{ns}, *, ** = non-significant and significant at $P \le 0.05$ and $P \le 0.01$ probability levels, respectively.

Table 4. Mean, minimum (min), maximum (max) of nodule dry weight (NDW; g plant⁻¹), biomass (g plant⁻¹), pod yield (g plant⁻¹) and harvest index (HI) of 130 peanut accession across 2 years were grouped into 4 clusters.

Cluster	No. accession		NDW	Biomass	PY	HI
1	63	Min	0.19	71.62	17.82	0.24
		Max	0.43	79.77	32.44	0.42
		Average	0.31	75.66	24.79	0.33
2	25	Min	0.22	80.69	20.48	0.23
		Max	0.56	97.45	35.84	0.43
		Average	0.32	84.64	25.46	0.31
3	33	Min	0.18	64.06	19.05	0.27
		Max	0.40	71.21	33.68	0.45
		Average	0.30	68.46	23.68	0.35
4	9	Min	0.16	58.38	15.00	0.26
		Max	0.38	62.83	24.86	0.40
		Average	0.30	61.19	21.20	0.35
Total	130	Min	0.16	58.38	15.00	0.23
		Max	0.56	97.45	35.84	0.45
		Average	0.31	74.56	24.39	0.33
		S.E	0.005	0.30	23.56	0.001

Cluster analysis

Base on traits related to nitrogen fixation including nodule dry weight, biomass and HI, Valencia peanut accessions could be classified into 4 groups ($R^2 = 0.85$) (Figure 2). Sixty three accessions (PI468225, PI476078, peanut PI476079, PI493381, PI493521, PI493536, PI501985, PI536300, PI497447, PI536307, PI599612, PI602494, PI315612, PI406718, PI429427, PI429430, PI493507, PI493514, PI493518, PI502023, PI508278, Grif13802, PI501269, PI576604, Breeding-line, PI409037, PI493339, PI493340, PI493344, PI493405, PI493442, PI493446, PI493484, PI493523, PI493612. PI493624, PI493629, PI493660, PI493810, PI493816, PI493865, PI493666, PI497642, DC 2440 (S3897), M C Ran, ICG 332, ICG 1142, ICG 1399, ICG 2738, ICG 3673, ICG 4670, ICG 5475, ICG 5609, ICG 6201, ICG 6646, ICG 9315 ICG 10890, ICG 13856, ICG 15309, KS 1, K4, KKU 60 and KKU 40) formed group 1, which was the largest group. This group had nodule dry weight ranging from 0.19 to 0.43 g plant⁻¹ with mean of 0.31 g plant⁻¹, biomass ranging from 71.62 to 79.77 g plant⁻¹ with mean of 75.66 g plant⁻¹, harvest index ranging from 0.24 to 0.42 with mean of 0.33 and pod yield ranging from 17.82 to 32.44 g plant⁻¹ with mean of 24.79 g plant⁻¹ (Table 4).

Figure 2. Dendrogram produced by Ward's minimum variance cluster analysis base on mean traits related to nitrogen fixation of 130 Valencia peanut accessions across 2 years.

Group 2 consisted of 25 peanut accessions (PI475921, PI475925, PI476089, PI501293, PI306361, PI407451, PI536121, PI493501, PI493565, PI493584, PI493630, PI494019, DC 2120 (S3873), S-3653, S-3881, 23322, S 3840 Kremena, ICG 1274, ICG 3681, ICG 6022, ICG 8517, ICG 10092, ICG 10474 and ICG 10554). This group had nodule dry weight ranging from 0.22 to 0.56 g plant⁻¹ with mean of 0.32 g plant⁻¹, biomass ranging from 80.69 to 97.45 g plant⁻¹ with mean of 84.64 g plant⁻¹, HI ranging from 0.23 to 0.43 with mean of 0.31 and pod yield ranging from 20.48 to 35.84 g plant⁻¹ with mean of 25.46 g plant⁻¹

Group 3 consisted of 33 accessions (PI475913, PI476074, PI493562, PI497459, PI259601, PI314980, PI338337, PI468208, PI493325, PI493360, PI493373, PI493382, PI493461, PI493451, PI493458, PI493470, PI493566, New BG, NM 052565, Rossita, Valencia – A, Valencia – C, ICG 115, ICG 297, ICG 397, ICG 5221, ICG 6888, ICG 7181, ICG 8106, ICG 111444, ICG 14127, ICG 15042 and KS 2). This group had nodule dry weight ranging from 0.18 to 0.40 g plant⁻¹ and mean of 0.30 g plant⁻¹, biomass production ranging from 64.06 to 71.21 g plant⁻¹ and mean of 68.46 g plant⁻¹, HI ranging from 0.27 to 0.45 and mean of 0.35 and pod yield ranging from 19.05 to 33.68 g plant⁻¹ and mean of 23.68 g plant⁻¹.

Group 4 consisted of 9 accessions (PI259580, PI365564, PI390432, PI493415, PI493688, ICG 10566, ICG 13858, ICG 14106 and ICG 14710). This group had nodule dry weight ranging from 0.16 to 0.38 g plant⁻¹ with mean of 0.30 g plant⁻¹, biomass ranging from 58.38 to 62.83 with mean of 61.19 g plant⁻¹, HI ranging from 0.26 to 0.40 with mean of 0.35 and pod yield ranging from 15.00 to 24.86 g plant⁻¹ with mean of 21.20 g plant⁻¹

Group 2 consisting of 25 accessions (such as ICG 3681, ICG 6022, ICG 10554, PI493630 and PI407451 etc.) had the highest nodule dry weight, biomass, pod yield and HI, whereas groups 4 consisting of 9 accessions (such as PI390432, PI259580, PI365564, PI493415 and ICG 10566 etc.) had the lowest nodule dry weight, biomass, harvest index and pod yield.

DISCUSSION

The traits related to nitrogen fixation consisting of nodule number, nodule dry weight, leaf color score, biomass production, shoot dry weight harvest index and nitrogenase activity had strong and positive correlations with nitrogen fixation (Philips *et al.*, 1989; Pimratch *et al.*, 2004, 2008). As most peanut growing soils are not fertile and peanut being a legume is dependent on atmospheric nitrogen for fixation nitrogen fixation traits are, therefore, closely related to growth parameters and pod yield. Harvest index is correlated with nitrogen fixation, if fixed nitrogen gives more contribution to pod vield than vegetative growth, and nitrogenase activity is related to nitrogen fixation as this parameter is an indirect assessment for nitrogen fixation. Most of the peanut growers are from Semi-Arid Tropics and cannot afford to apply synthetic fertilizers. Selection of varieties with high nodules number and high yield helps growers to reduce the input cost on commercial fertilizers. Selection for surrogate traits as an indirect method for nitrogen fixation is much easier than direct selection for nitrogen fixation which is difficult and can be performed in laboratory.

Genotypic diversity is important source of germplasm for breeding program. Breeders can select peanut accessions for improving the characters. Peanut Genotypes with high nitrogen fixation and high yield should be used as parents in peanut breeding programs for high nitrogen fixation (Pimratch *et al.*, 2008). Krishna *et al.* (2004) identified 48 Valencia peanut from 20 different country by using microsatellite makers.

Genotype variations were observed for all characters under study. The Valencia peanut germplasm had high variations in nodule dry weight, biomass production, pod yield and harvest index. The range of variation for nodule dry weight in this study was from 0.16 to 0.56 g plant⁻¹. In previous study using other germplasm under well-irrigated condition, the range of nodule dry weight was from 0.38 to 0.57 g plant⁻¹ (Dinh *et al.*, 2013). The results in this study were similar to those in previous study.

The peanut accessions were classified into 4 groups based on Squared Euclidian distance matrix which indicated degree of similarity. High values showed high similarity and vice versa. Group 2 consisting of 25 accessions had the highest biomass and pod yield. The accessions in this group should be selected as parents in breeding programs. Group 4 consisting of 9 accessions had low biomass, pod yield and nodule dry weight. In previous variation investigation. the in biomass production ranged from 6,766 -8,875 kg ha⁻¹ (Pimratch et al., 2008). In this study, the variation in biomass productions ranged from 5,838 to 9,845 kg ha⁻¹ was observed.

The peanut genotypes with high nodule dry weight can be used as parents by peanut breeders to incorporate high nitrogen fixation traits into cultivated varieties with high yield and good agronomic traits. The variations in traits related to nitrogen fixation are also important for prediction of the possible success in breeding programs for improving nitrogen fixation in Valencia peanut.

CONCLUSION

This study investigated the variation in nodule dry weight, biomass, pod yield and harvest index in 130 accessions of Valencia peanut germplasm. The results indicated that high variation was observed for all characters under study. The accessions with high biomass production, pod yield and nodule dry weight are promising for use as parents in breeding programs.

ACKNOWLEDGEMENTS

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Food and Functional Food Research Cluster of Khon Kaen University (KKU), Thailand. This work were also partially supported by Peanut CRSP NMS 72 project by USAID through University of Georgia ECG-A-00-0700001-00 and peanut genotypes for this study were kindly provided by ICRISAT, Mexico State University, USA. New Grateful acknowledgement is made to the Thailand Research Fund, for providing financial supports to this research through the Senior Research Scholar Project of Professor Dr. Sanun Jogloy (Project No RTA 5880003). Acknowledgment is extended to the Thailand research fund (IRG5780003), KKU and faculty of agriculture, KKU for providing financial supported for manuscript preparation activities.

REFERENCES

- Bricker AA (1989). MSTAT-C User's guide. Michigan State University, East Lansing, MI.
- Dinh HT, Kaewpradit W, Jogloy S, Vorasoot N, Patanothai A (2013). Biological nitrogen fixation of peanut genotypes with different

levels of drought tolerance under mid-season drought. SABRAO J. Breed. Genet. 45: 491-503.

- Giller KE, Nambiar PTC, Srinivasa Rao B, Dart PJ, Day JM (1987). A comparison of nitrogen fixation in genotypes of groundnut (*Arachis hypogaea* L.) using 15N-isotope dilution. *Biol. Fertil. Soil.* 5(1): 23-25.
- Giller KE (2001). Nitrogen fixation in tropical cropping systems. 2nd ed. CAB International, Wallingford, UK.
- Herridge D, Rose I (2000). Breeding for enhanced nitrogen fixation in crop legumes. *Field Crops Res.* 65: 229-248.
- Hoshmand AR (2006). Design of experiments for agriculture and the natural sciences 2nd Ed. Chapman & Hall/CRC, Boca Raton, FL.
- Krishna GK, Zhang J, Burow M, Pittman RN, Delikostadinov SG, Lu Y, Puppala N (2004). Genetic diversity analysis in Valencia peanut (*Arachis hypogaea* L.) using microsatellite markers. *Cell. Mol. Biol. Lett.* 9: 685-697.
- McDonagh JF, Toomsan B, Limpinuntana V, Giller KE (1993). Estimate of the residual nitrogen benefit of groundnut to maize in Northeast Thailand. *Plant and Soil*. 154: 267-277.
- McDonagh JF, Toomsan B, Limpinuntana V, Giller KE (1995). Grain legumes and green manures as pre-rice crops in Northeast Thailand: Legume N₂-fixation, production and residual nitrogen benefits to rice. *Plant and Soil.* 177: 111-126.

- Phillips TD, Wynne JC, Elkan GH, Schneeweis TJ (1989). Field evaluations of peanut cultivar-Bradyrhizobium specificities. Peanut Sci. 16: 54-57.
- Pimratch S, Jogloy S, Toomsan B, Jaisil P, Sikhinarum J, Kesmala T, Patanothai A (2004). Evaluation of seven peanut genotypes for nitrogen fixation and agronomic traits. *Songklanakarin J. Sci. Technol.* 26: 295-304.
- Pimratch S, Jogloy S, Vorasoot N, Toomsan B, Patanothai A, Holbrook CC (2008).
 Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. J. Agron. Crop Sci. 194: 15-25.
- Purseglove TW. 1977. Tropical crops dicotyledons, Longman Group Ltd., London. pp. 224-235.
- SAS Institute (2001). SAS/STAT User's guide, 2nd ed. SAS Institute Inc. Cary.
- Toomsan B (1990). Groundnut microbiology research at Khon Kaen University. In: A. Patanothai, ed., Groundnut improvement project, Khon Kaen University. Report of work for 1986-1988. Faculty of Agriculture, Khon Kaen University. Khon Kaen, Thailand. pp. 89-111.
- Toomsan B, McDonagh JF, Limpinuntana V, Giller KE (1995). Nitrogen fixation by groundnut and soybean and residual nitrogen benefits to rice in farmers' field in Northeast Thailand. *Plant and Soil*. 175: 45-56.