Multi-environment experiment undertakings in 2020 recognized the stability and adaptability of promising swamp rice genotypes on five types of swampland agroecosystems. Grain yield data recording occurred on 10 swamp rice favorable lines and two check cultivars, transplanted on swamps consisting of alluvial mud, lowland peaty, lowland peat, middle estuarine tidal, and lower estuarine tidal swamp, then subjected to a combined analysis of variance. The AMMI model employed illuminated the effects of environments on a genotype’s grain yield stability across the surroundings. Among the tested conditions, alluvial mud and lowland peat swamps showed as the most predictable environments for rice grain yield evaluation, with the former also representing a rich surrounding, whereas the latter a poor one, despite their provided weak genotype discrimination. Lowland peaty swamp was also a productive environment and conferred strong genotypic discrimination. Both middle and lower estuarine tidal swamps were less fruitful and had rationally durable genotype discrimination. Rice lines UBPR 1, UBPR 8, UPBR 2, and UBPR 4 indicated more desirable than the check cultivars (Inpara 6 and Inpara 4) for grain yield and stability across the test environments. The lines UBPR 3 and UBPR 10 enunciated desirable adaptive performance at the lowland peaty swamp.
Swamp rice lines, promising lines, agroecosystem, lowland swamp, tidal swamp, genotype by environment interaction, AMMI model
The swampland’s environmental conditions differing in typologies manage the rice grain yield. Comparatively, some genotypes outperformed others in response to changing agroecological conditions. Relatively stable and adapted genotypes emerged from lowland peaty swamps.