S.O. BASTAUBAYEVA, L.K. TABYNBAYEVA, R.S. YERZHEBAYEVA, K. KONUSBEKOV, A.M. ABEKOVA and M.B. BEKBATYRO
SUMMARY
The use of suitable technologies helps crop cultivation under unfavorable and extreme weather conditions obtain the optimum yield by influencing irrigation, fertilization, sowing time, and crop density. The study aimed to determine the impact of adaptive technologies on sugar beet (Beta vulgaris L.) cultivation at the Kazakh Research Institute of Agriculture and Plant Growing, Almaty Region, Kazakhstan. The phenological observations on basic phases of sugar beet growth and development, and plant density were done according to the generally accepted methods. Moreover, the photosynthetic activity of crop productivity was studied through the accumulation of raw and dry biomass (weight method), area determination of the assimilation apparatus (die-cutting method), and the advent of photosynthetic active radiation. The influence of meteorological conditions was particularly noted on plots with moisture deficit. Maintaining such pre-irrigation soil moisture at 60% of LMC (Least Moisture Capacity) requires less watering with large irrigation rates (1020-1260 m3 ha-1 ) with inter-irrigation periods of 30–37 days. In 2016, three irrigations with the rate of 1220-1260 m3 ha-1 were done. Maximum water consumption occurs from the end of July to the beginning of August. Consumption of spring reserves for soil moisture was 8%-10% higher at late harvesting than at early harvesting. During the crop season with high rainfall distributed uniformly over the vegetation period, spring soil moisture reserves consumption increased and their share in total water consumption increased 12% up to 20%, whereas, during dry seasons it decreased 6% up to 14%. The study noted that for producing the sugar beet yields ranging from 22.6 to 65.2 t ha-1, the NPK should be applied at the rate of nitrogen (32 – 215 kg ha-1), phosphorus (12–68 kg ha-1), and potassium (50–380 kg ha-1), It was also found necessary to apply fertilizers differentially depending on the level of applied technology for the planned beet yield.
Keywords: Crop productivity, production process, fertilizers, photosynthesis, automated agricultural technologies, sugar beet (Beta vulgaris L.)
DOI: http://doi.org/10.54910/sabrao2022.54.1.13