Mutation breeding can improve the flower color and biochemical content. French marigold (Tagetes patula L.) is an ornamental and edible flower plant used for medicinal purposes. The latest study aimed to obtain potential genotypes with modified flower morphology, which contain high polyphenol content and antioxidant activity induced by gamma irradiation in M4 populations. The plant material was a wild type (MG21 genotype), a local genotype from Takengon, Aceh, Indonesia, with red-orange tubular and ligulate flower types and its five mutants with different flower morphologies. The wild type and its mutant genotypes vegetative propagation reached planting from October 2022 until March 2023 at an altitude of 1100 m asl (6° 46′ 6.268″ N latitude, 107° 2′ 57.703″ E longitude). Flower morphology assessment ensued through various observations based on UPOV and RHSCC criteria, and phenotypic measurement employed a colorimeter. The polyphenol analysis determined the total anthocyanin content (TAC), total phenolic content (TPC), and total flavonoid content (TFC). The antioxidant activity estimation of T. patula used the Ferric Reducing Antioxidant Power (FRAP) assay. The results also showed the diversity of mutant flower morphology, followed by different polyphenol contents and antioxidant activity. The highest TAC, TPC, and TFC were evident in Type-C (all-ligulate, red group), which was also higher than the wild type (tubulate and ligulate, red group). In addition, the highest FRAP occurred in Type-A (tubuligulate and ligulate, orange-red group), Type-B (all-ligulate, orange-red group), and Type-C, while the wild type was the lowest. The research revealed two potential mutant genotypes, type A and C, with high polyphenol content and antioxidant capability due to gamma irradiation in the M4 populations.
French marigold (Tagetes patula L.), ornamental plant mutation, polyphenol, flavonoids, antioxidants, color analysis
Two promising mutant genotypes characterized by different flower morphology and high biochemical content were obtainable through mutation in the local T. patula genotype. The latest research outcome offers insights into the potential traits of these mutants compared with the wild type. It also establishes correlation, encompassing the quantification of flower color using the CIELAB system to polyphenol content and antioxidant activity.