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SUMMARY 

 

Bacterial stalk rot (BSR) caused by Dickeya zeae is one of the important diseases of maize that 
significantly affects maize yield performance. Resistance to D. zeae is influenced by high humidity and 

temperature. Affected tissues are described as soft, mushy, and emitting a foul odor. Yield losses can 

reach approximately 98.8% of the grower‟s potential. Quantitative trait locus (QTL) mapping 
experiments using seven biparental populations were conducted at Syngenta Philippines, Inc., from 

2014–2020 to locate consistent QTL and markers involved in BSR resistance. The QTL detected in 

NMM033, NMM073, NMM089, NMM090, NMM091, NMX003, and NMX001 populations were used to 
estimate the numbers and positions of consensus QTL with BioMercator V4.2.3 software. Meta-

analysis for BSR resistance was conducted by considering all QTL for BSR resistance traits identified in 

2014–2020. Among the 49 distinct markers on chromosomes (chrs) 1 to 10, eight most significant loci 

were detected, i.e., MSRQTL1-1, MSRQTL2-1, MSRQTL3-1, MSRQTL3-2, MSRQTL5-1, MSRQTL5-2, MSRQTL6-

1, and MSRQTL10-1. Meta-QTL were identified in chrs 1, 5, and 10 in four populations; in chr 2 in three 

populations; and in chrs 3 and 6 in two populations evaluated in this study. The regions identified in 

chrs 1, 2, 3, 5, 6, and 10 with high QTL colocalization across biparental populations were considered 
as important QTL for BSR resistance traits. Further implementation through fine-mapping is 

recommended for marker development. The impact of this discovery would strengthen downstream 

applications in marker-assisted backcrossing and is not only limited to maize BSR resistance but also 
to other native traits of different crops. 
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Key findings: Through meta-QTL analysis, we focused on the chromosomal regions for BSR-

resistance traits identified in chrs 1, 2, 3, 5, 6, and 10 with high QTL colocalization across biparental 

populations. Meta-QTL analysis provides a preliminary step in identifying important regions across 
different studies before downstream applications, such as fine-mapping and marker development. 
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INTRODUCTION 

 

Maize (Zea mays L.) is the third most 
important crop after wheat and rice in the 

world (Shiferaw et al., 2011). Maize production 

is constrained by several abiotic and biotic 
factors. Among these biotic factors, bacterial 

stalk rot (BSR) caused by Dickeya zeae has 

economic importance given that it reduces crop 
yield by up to 98.8% (Kumar et al., 2017). 

BSR occurs at all stages of crop growth. It 

causes top rot, stalk rot, and ear rot depending 
on the tissue or organ affected. In general, 

affected tissues are described as soft, mushy, 

and emitting a foul odor. Infected plants show 

wilted leaves and may either lodge or remain 
standing depending on the stage of the crop 

(Thind and Payak, 1985). The pathogen infects 

the plant through natural openings, such as 
stomata and hydathodes. Infection also occurs 

through wounds in the leaf whorl, stalks, and 

roots caused by insects and injuries induced by 
strong winds and/or mechanical means. Host 

plant resistance remains the most economical 

approach to managing BSR. Resistance sources 
in line and hybrid development have been 

identified by various researchers (Ebron et al., 

1987; Sah and Arny, 1990; Subekti and 

Salazar, 2007). The classification of available 
inbreds into distinct heterotic groups is critical 

for the development of superior hybrids, 

synthetics, and breeding populations with 
disease resistance (Akinwale et al., 2014). 

Through the years, quantitative trait 

locus (QTL) mapping has consistently been a 
reliable tool in identifying genomic regions 

involved in the genetic variation of traits, 

including BSR resistance. In the past decades, 
several QTL associated with various maize 

traits (i.e., days to pollen shed, silking date, 

plant height, leaf number, plant phosphorous 

content, fibrous root number, plant weight, 
and seedling root) in different mapping 

populations and under different growth 

conditions (Chardon et al., 2004; Chen et al., 
2008; Song et al., 2016) have been reported. 

However, the significance of QTL mapping 

results is influenced by numerous factors, 
which include experimental design, population 

type and size, population structure, genetic 

marker density, and statistical methods (Guo 
et al., 2018). Meta-analysis is an effective 

approach for combining the QTL results from 

independent studies and refining QTL positions 

on consensus maps (Chen et al., 2017). The 

end goal of meta-QTL analysis is to improve 

the predictive inference of “true” QTL locations 
for the trait of interest. One of the key factors 

in selecting QTL data to be included in a meta-

analysis is reliance on published reports that 
are statistically significant. However, most of 

the time, such reliance leads to a “file drawer 

problem” or publication bias (Wu and Hu 
2012). Importantly, meta-analysis should not 

be only limited to the utilization of published 

data but should also be instead used on 
independent studies being done in private 

companies. 

Between QTL and meta-QTL, an 

individual QTL is a locus that, in a given 
environment, segregates between two or more 

parents and thus shows a correlation between 

allelic and phenotypic variation for a given trait 
(Miles et al., 2008). An individual QTL has 

different attributes, such as a confidence 

interval (CI), LOD value, R² value, and genetic 
effects. A meta-QTL indicates the most likely 

consensus position of a group of individual 

colocalizing QTL. It has a peak position, a CI, a 
weight but no LOD value, no R² value, and no 

allelic effect. It can be seen as the in silico 

validation of genomic regions because they are 

detected multiple times (Goffinet and Gerber, 
2000). 

Several meta-QTL studies on various 

crops have been reported. However, only 
limited QTL concerning various maize BSR 

traits have been reported. A 2021 study by 

Shariatipour et al. showed the utility of meta-
QTL analysis in narrowing the CI of QTL 

identified in several independent studies on 

zinc and iron in wheat. Khowaja et al. (2009) 
established that in rice, the sd1 semidwarfing 

gene coincides with the plant height meta-QTL, 

and the drought avoidance meta-QTL is not 

likely associated with the sd1 gene. The 
authors concluded that meta-analysis is 

valuable for providing an improved capability 

to dissect the complex genetic structure of 
traits and gives relatively confined target 

regions for the identification of positional 

candidate genes. 
To the authors‟ knowledge, the 

publication by Canama and Hautea (2010) is 

the only paper reporting QTL mapping for BSR 
resistance. In the current study, which was 

conducted in Syngenta Philippines, Inc., from 

2014 to 2020, QTL associated with BSR 
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resistance traits in maize were detected in 

seven biparental populations, and meta-QTL 
were identified through a meta-analysis 

method based on the consensus reference map 

created by Syngenta. The objectives of the 
present meta-QTL analysis are to (1) 

summarize the QTL related to BSR resistance 

traits that were detected between 2014 to 

2020, (2) refine the positions of the detected 
QTL, and (3) identify of a set of promising 

candidate genes associated with BSR traits 

MATERIALS AND METHODS 

 
Plant materials and field experiments 

 

Seven biparental populations were screened for 
BSR resistance and utilized for meta-analysis 

from 2014 to 2020. In total, 2122 plant 

materials (i.e., 246–360 entries per 

population) consisting of F3, F4, and B1F4 
generations were evaluated, see Table 1. 

Table 1. Corn biparental populations screened for BSR resistance from 2014–2020. 

Population 

Gene- 

ration 
Code 

Number of 

Segregating 
Lines 

Rep 
Susceptible 

Parent 

BSR 

Score 
(%) 

Donor Parent 

BSR 

Score 
(%) 

Year Location 

NMM033 F3 360 2 08MZF-DJCS 81 07MZF-BLTH 17 2014 General Santos City 

NMM073 F3 300 2 12MZF-FL48 77 07MZF-BLTH 37 2016 General Santos City 

NMM089 F3 305 2 13MZF-SJQ4 59 07MZF-BLTH 30 2017 General Santos City 

NMM090 F3 310 2 13MZF-SJQ3 97 07MZF-BLTH 28 2017 General Santos City 

NMM091 F3 320 2 13MZF-FL8V 60 07MZF-BLTH 22 2017 General Santos City 

NMX003 B1F4 246 3 06MZF-D129 67 10MZF-L4K2 16 2020 Alabel 

NMX001 F4 281 3 10MZF-MPNW 80 10MZF-L4K2 20 2020 Alabel 

 

Five populations from heterotic pool 1 

(hp1) and two populations from heterotic pool 

2 (hp2) were screened in General Santos City, 
Philippines, for BSR resistance. Artificial 

inoculation was performed by using the stab 

method (Pascual and Salazar, 2001) to ensure 
homogeneous BSR infection. Field experiments 

were set up by using randomized complete 

block design with two replications for hp1 
populations and three replications for hp2 

populations. Following the selection of parents 

as described by Yang et al. (2004), the maize 
inbred lines 07MZF-BLTH and 10MZF-L4K2 with 

high resistance were selected. The inbred lines 

08MZF-DJCS, 12MZF-FL48, 13MZF-SJQ4, 

13MZF-SJQ3, 13MZF-FL8V, 06MZF-D129, and 
10MZF-MPNW were susceptible to BSR. Test 

entries, including resistant and susceptible 

checks, were planted in the experiment. Two 
seeds were sown per hill in a 5 m row with a 

20 cm planting distance. Thinning was 

performed 15–20 days after planting (DAP). A 
total of 26 healthy plants were retained in the 

plot. The final stand count was recorded before 

inoculation. All cultural practices used for 
growing maize, except bactericide application, 

were applied. The degrees of freedom in the 

analysis of variance (ANOVA) of segregating 
populations were partitioned into replication, 

entries, and error terms. All plant materials 

used in this study are proprietary to Syngenta 

Philippines, Inc. 
 

Artificial inoculation of BSR and 

phenotyping of segregating lines 

 
Phenotyping experiments for BSR were 

conducted in Syngenta RnD Station, General 

Santos City, Philippines, and in Alabel, 
Saranggani Province, Philippines. Test entries, 

including resistant and susceptible checks, 

were planted in the BSR nursery. 
Inoculum (Pascual and Salazar, 2001) 

was standardized to approximately 107–108 

cfu/mL by using a spectrophotometer (1.0 
absorbance at 600 nm O.D.). Inoculation was 

done at 45–50 DAP via the stab method. A 1 

cm needle (attached to a handle) was dipped 

in the inoculum and stabbed into the stalk‟s 
second internode from the base of the plant. 

Irrigation was provided to favor disease 

development. Data collection for BSR rating 
(BACSR) and BSR number (BACSN) were 

recorded at 5, 10, and 15 days after 

inoculation (DAI). BSR percentage (BACSP) 
was calculated by dividing the BACSN by the 

final stand count. Evaluation of resistance 

(BACSP) was done at 15 DAI. Rating scales for 
BSR (BACSR) are provided in Table 2 by 

following the scale used by Syngenta for the 

stab inoculation method. Note that artificial 
inoculation was performed on all plants to 

ensure the homogenous infection of the plants 

by the pathogen. 
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Table 2. Evaluation and recording of BSR disease reactions. 

Scale Reaction Description  

1  Highly resistant 0%–5% wilted plants 

3  Resistant 6%–10% wilted plants  

5  Moderately resistant 11%–25% wilted plants  
7  Susceptible 26%–50% wilted plants 

9  Highly susceptible 51%–100% wilted plants 

 

Table 3. QTL used in the meta-analysis. 

Population 
Population 
type 

Number of polymorphic 
markers 

Trait 
Number of QTL 

detected 

NMM033 F3 234 BACSP, BACSN 7 

NMM073 F3 252 BACSP, BACSN 10 
NMM089 F3 278 BACSP, BACSN 6 

NMM090 F3 336 BACSP, BACSN 5 

NMM091 F3 352 BACSP, BACSN 7 

NMX003 B1F4 2235 BACSP, BACSR, BACSN 10 
NMX001 F4 2821 BACSP, BACSR, BACSN 4 

Legend BACSP BSR percentage  

 BACSR BSR Rating  

  BACSN BSR number  

 

 

Statistical analyses of phenotypic data 

 
Data analysis was run on the R Studio 

Syngenta Server by using the “lmer” package 

in R (Bates et al. 2015). Quantitative genetic 
parameters were estimated on the basis of the 

progenies. All variables were set as random to 

compute heritability estimates. Variance 
components were determined via the restricted 

maximum likelihood method assuming a 

random model (Liu et al., 2011). Broad-sense 
heritability on an entry-mean basis was 

calculated as the ratio of genotypic-to-

phenotypic variance.  

 
H2 = σ2

G/[σ2
G + σ2

e], 

 

where σ2
G refers to genotypic variance, and σ2

e 
refers to residual variance. 

In the case of biparental mapping, 

analysis was performed by setting entries as 
fixed to obtain the mean LS values. 

 

Genotyping of material in biparental 
populations and linkage analysis 

 

Each of the lines in hp1 populations and their 
parents were genotyped by using a set of 

TaqMan markers (Biosearch, USA). The 

average number of polymorphic markers used 

in these studies was approximately 290 for 
each of the five populations. Two hp2 

populations and their parental lines were 

genotyped with a haplotype-based approach by 

using the 15K Axiom® Maize Genotyping Array 

designed by Syngenta (Thermo Fisher 
Scientific, 2018). Composite interval mapping 

was used to map QTL and estimate their 

genetic effects for each trait (Zeng, 1994). An 
empirical threshold was determined by using 

1000 permutations (Churchill and Doerge, 

1994) to identify the significance threshold for 
each trait. QTL positions were identified on the 

basis of the maximum likelihood odds ratio 

(LOD). QTL CIs were obtained by subtracting 
the start QTL position from the end QTL 

position. 

 

Preparation of QTL data, consensus map, 
and QTL projection 

 

A total of 49 QTL for three BSR resistance 
traits (i.e., BACSP, BACSR, and BACSN) were 

detected in seven biparental populations, see 

Table 3. These studies covered different 
population sizes that ranged from 246 to 360 

genotypes. The QTL information, including the 

flanking markers, phenotypic variation 
explained by each QTL, and CIs, was extracted 

from the 49 QTL for the three maize BSR 

resistance traits from Syngenta‟s historical 
data. BioMercator V4.2.3 (Sosnowski et al., 

2012) was used to project the identified QTL in 

seven mapping populations onto the consensus 

map. The QTL projection was based on LOD 
scores (>2.5), phenotypic variation explained 

by each QTL (R2), CIs, and QTL positions (cM). 

The CIs of 49 QTL were obtained on the basis 
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of on the genetic positions of the flanking 

markers on the consensus map. For the 
markers without genetic positions, the closest 

markers of the QTL flanking markers from the 

reference were used to project QTL on the 
consensus map. QTL that cannot be mapped 

onto the consensus map and/or mapped 

location outside the consensus map were 

removed (Sosnowski et al., 2012). 
Moreover, the LOD scores varied from 

2.63 to 16.59. QTL were selected on the basis 

of significance threshold determination via 
multiple permutations (n. perm = 1000) and 

varied across populations. All QTL above the 

threshold values were included in the meta-
analysis. As mentioned in the literature review, 

meta-analysis did not consider LOD and R2 

values except for genetic position and CI 
among QTL included in the analysis. 

 

Meta-analysis with BioMercator V4.2.3 
 

The analysis was performed with the two-stage 

clustering procedure reported by Veyrieras et 

al. in 2007, implementing two kinds of 
clustering algorithms. Gaussian and unbiased 

approximation originated from the asymptotic 

Gaussian distribution of the maximum-
likelihood estimation of parameters applying 

the Expectation–Maximization algorithm. The 

main output of first-step ClustQTL is the 
optimal number of QTL locations in accordance 

with the model choice criteria. The Akaike 

Information Criterion (AIC) was used to select 
QTL models for each chromosome (chr). 

Significant models were selected with the 

lowest AIC value, indicating a better fit in 

predicting future values. The second step 
MQTLView provides the number of meta-QTL 

as suggested in the model. The final selection 

of meta-QTL has been determined if CI < 90 
cM and QTL probability of membership > 30%.  

The position and CI of each of the 

original QTL were projected on the consensus 
map. Quality control was applied to select only 

QTL with LOD greater than 2.5. BACSP, 

BACSR, and BACSN traits were combined into 
the single trait BAC_n to cover all related traits 

in BSR QTL locations that were assumed to be 

normally distributed around their true locations 
with variances that were obtained from the 

reported CI and R2 values. 

RESULTS 

 
Response of the populations to BSR 

 

The result of aggregated ANOVA among 
populations was significant for all traits, see 

Tables 4, 5, and 6. Similar to the study 

conducted by Li et al. (2011), this study 

included only populations with significant 
ANOVA in the meta-analysis. All traits differed 

greatly between the two parents. The inbred 

lines 07MZF-BLTH and 10MZF-L4K2 had lower 
BACSP, BACSR, and BACSN than the inbred 

lines 08MZF-DJCS, 12MZF-FL48, 13MZF-SJQ4, 

13MZF-SJQ3, 13MZF-FL8V, 06MZF-D129, and 
10MZF-MPNW, see Table 1. The resistant 

parental line checks and the susceptible 

parental line checks were consistent in 
expressing resistance and susceptible response 

across testing years, see Figure 1. The values 

of the histogram showed that BACSP was 
normally distributed in all populations, see 

Appendix Figure 1. Phenotypic correlations 

between replications were observed to be 

higher in three replicated trials (ranging from 
52% to 66%) than in two replicated trials 

(ranging from 6% to 38%), see Table 7. 

Transgressive segregation was also observed 
for all traits. 

Broad-sense heritability for all the 

traits ranged from 19.92% to 53.87%, see 
Tables 4, 5, and 6. Heritability for BACSP was 

observed with the highest average at 38.6% 

compared with that for BACSR (29.4%) and 
BACSN (33%). In general, heritability in the 

broad sense does not yield a figure that is 

predictive and is therefore helpful in QTL 

analysis. For example, if H2 = 0.7, then the 
trait being measured is likely highly 

attributable to genetic control. Thus, QTL 

analysis can be performed. On the other hand, 
if H2 = 0.3, the trait (e.g., diseases) being 

measured is likely to have low heritability, and 

QTL analysis may not be needed. In the 
practical sense, broad-sense heritability can 

serve as a guide for performing QTL analysis 

and depends on the context of the traits being 
measured. As mentioned by Rebetzke et al. 

(2008), decreasing the environmental variance 

(for example, increasing the number of 
replications or by using a more uniform 

environment) generally increases heritability. 
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Table 4. Significance of genotypic effects and heritability estimates for the segregating populations 

screened in BACSP by using RCB design. 

Trial ID d.f. SS MS F value Pr(>F)  H2 Residual 

NMM033 361 359318 995.34 2.3087 4.360E−16*** 36.52% 431.10 

NMM073 302 267675 886.34 1.933 4.174E−09*** 31.55% 458.50 
NMM089 307 236852 771.51 2.5251 2.200E−16*** 35.25% 305.50 

NMM090 312 292134 936.33 2.3141 1.720E−14*** 34.14% 404.60 

NMM091 322 315911 981.09 2.1966 2.890E−13*** 31.69% 446.65 

NMX003 218 361945 1660.3 7.0133 2.200E−16*** 53.87% 236.73 
NMX001 284 510050 1796 5.3023 2.200E−16*** 47.33% 338.71 

BACSP: BSR Percentage, d.f.: degrees of freedom, SS: Sum of squares, MS: Mean squares, F: Value variance 

between the means of two populations residual error, Pr(>F) results likely did not occur by chance, H
2
: Heritability 

estimate, **: significant at 0.1%, ***: significant at 0.01%. 
 
 

Table 5. Significance of genotypic effects and heritability estimates in the segregating populations 

screened in BACSR using RCB design. 

Trial ID d.f. SS MS F value Pr(>F) H2 Residual 

NMM033 361 1548 4.288 1.8545 1.210E−09*** 27.34% 2.31 

NMM073 302 6.7309 302 1.5819 2.855E−05*** 22.25% 4.26 
NMM089 307 1795.6 5.849 1.5373 5.244E−05*** 20.06% 3.81 

NMM090 312 1436.2 4.6033 1.5471 3.600E−05*** 19.92% 2.98 

NMM091 322 2210.3 6.8431 1.7701 7.437E−08*** 24.85% 3.87 
NMX003 218 2376.1 10.899 5.6767 2.200E−16*** 48.91% 1.92 

NMX001 284 3860.9 13.595 4.2167 2.200E−16*** 42.78% 3.22 

BACSR: BSR Rating, d.f.: degrees of freedom, SS: Sum of squares, MS: Mean squares, F: Value variance between 

the means of two populations‟ residual error, Pr(>F) results likely did not happen by chance, H
2
: Heritability 

estimate, **: significant at 0.1%, ***: significant at 0.01%. 
 
 

Table 6. Significance of genotypic effects and heritability estimates in the segregating populations 
screened in BACSN using RCB design. 

Trial ID d.f. SS MS F value  Pr(>F) H2 Residual 

NMM033 361 15942 44.161 2.0039  1.000E−11*** 31.01% 22.04 

NMM073 302 12515 41.442 1.8288  6.354E−08*** 29.16% 22.66 

NMM089 307 8947.9 29.146 1.8161  3.905E−08*** 25.71% 16.05 

NMM090 312 12667 40.599 1.7735  9.800E−08*** 25.19% 22.89 

NMM091 322 13160 40.745 1.8468  8.696E−09*** 26.78% 22.06 

NMX003 218 29435 135.02 5.2983  2.200E−16*** 46.90% 25.48 

NMX001 284 42774 150.61 4.447  2.200E−16*** 46.52% 33.76 

BACSN = BSR number, d.f.: degrees of freedom, SS: Sum of squares, MS: Mean squares, F: Value variance 

between the means of two populations‟ residual error, Pr(>F) results likely did not happen by chance, H
2
: 

Heritability estimate, **: significant at 0.1%, ***: significant at 0.01%. 
 

 

Table 7. Correlation between replications in seven independent populations used for the meta-

analysis. 

Populations Rep1/Rep2 Rep1/Rep3 Rep2/Rep3 

NMM033 6% - - 

NMM073 30% - - 

NMM089 38% - - 
NMM090 38% - - 

NMM091 34% - - 

NMX003 66% 62% 64% 
NMX001 59% 52% 55% 
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Figure 1. a) Susceptible check, b) Resistant check plant responses to BSR. 
 

Moreover, higher heritability was observed for 

three replicated trials (ranging from 42.78% to 
53.87%) than for two replicated trials (ranging 

from 19.92% to 36.52%) for all of the 

evaluated BSR resistance traits. As reported by 
Casler (2014), increasing the number of 

replicates has a direct and positive effect on 

experimental precision, specifically in reducing 
the standard error (SE) of the experiments. 

Given the results of this study, three replicated 

trials had a higher precision (i.e., lower SE) in 
estimating background variances (noise) of 

treatment effects on all traits, except for 

BASCN in the NMX003 (Residual value at 
25.48) and NMX001 (Residual value at 33.76) 

populations, see Table 4, 5, and 6. 

 

QTL for BSR resistance traits 
 

The reported QTL for three BSR resistance 

traits were distributed randomly in 10 chrs, 
with the total number of QTL per chr ranging 

from 1 (chr 4) to 8 (chr 7), see Table 8. Chrs 

1, 3, 5, 7, and 10 showed a relatively high 
number of QTL (6–8) associated with BSR 

resistance traits. The 49 QTL were classified on 

the basis of the percentage of the phenotypic 
variance explained by each QTL. A total of 39 

(80%) of the 49 QTL displayed an R2 value of 

less than 10%, whereas 10 QTL (20%) 

explained more than 10% of the phenotypic 
variance. Of these 49 QTL, most for individual 

traits were for BACSP and BACSN. The number 

of QTL identified per chr across the seven 

mapping populations were unevenly 

distributed, see Figure 2. 
Interestingly, QTL for BACSR traits 

were also detected in the NMX003 and NMX001 

biparental populations likely because of the 
highly dense SNPs used for these populations. 

As mentioned above, all values above the 

significance threshold were included in the 
meta-analysis. This study validated the 2010 

report from Canama and Hautea on identifying 

major QTL located at 35.05 cM on chr 2 with R2 
= 25.9%. Across different mapping 

populations, population structures, marker 

types (SSR, AFLP, RGA vs SNPs), and genetic 
maps, common QTL on chr 2 were identified as 

major QTL conferring resistance to BSR (R2 = 

25.9% vs 19.46%). However, a high R2 does 

not necessarily mean high CI. 
TaqMan and Axiom markers are SNP 

markers with different platforms and number 

of markers involved. In general, few markers 
were used in mapping analysis on the 

NMM033, NMM073, NMM089, NMM090, and 

NMM091 populations, see Table 3. By contrast, 
approximately 15 000 markers were run 

through the Axiom® genotyping platform. The 

advent of SNP markers on the Axiom 
genotyping platform overlays a more precise 

genetic map that represents the genome of 

maize (Thermo Fisher Scientific, 2018). Finally, 

estimates of genetic effects were obtained 
from QTL analysis. In general, additive and 

dominant genetic effects were observed for 

BACSP, BACSR, and BACSN in 10 chrs. 
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Table 8. QTL identified in seven biparental populations consisting of three BSR resistance traits, i.e., BACSP, BACSR, and BACSN. 

Populations QTL_ID Trait Year Chr# LOD R2 Position (cM) Start (cM) Stop (cM) CI 

NMM073 qbacsp1-16 BACSP 2016 1 3.55 5.07 538 408.52 565.59 157.07 

NMM089 qbacsp1-17 BACSP 2017 1 2.83 3.11 29.6 11.64 390.66 379.02 
NMX001 qbacsp1-20 BACSP 2020 1 8.56 11.54 417 401.72 419.25 17.52 
NMM033 qbacsp2-14 BACSP 2014 2 12.06 12.83 110 64.99 369.51 304.53 
NMM090 qbacsp2-17a BACSP 2017 2 14.28 19.46 57.8 31.15 84.51 53.36 
NMM091 qbacsp2-17b BACSP 2017 2 2.99 3.64 22.4 6.38 468.42 462.05 
NMX003 qbacsp3-19 BACSP 2019 3 13 21.64 405 379.55 407.23 27.68 
NMX001 qbacsp3-20 BACSP 2020 3 8.19 10.41 433 432.8 441.36 8.56 
NMM033 qbacsp5-14 BACSP 2014 5 4.81 4.27 415 371.39 424.06 52.67 
NMM089 qbacsp5-17a BACSP 2017 5 5.81 6.35 389.4 376.92 411.11 34.19 
NMM091 qbacsp5-17b BACSP 2017 5 4.9 5.81 37.9 18.95 59.98 41.04 
NMM073 qbacsp6-16 BACSP 2016 6 2.63 2.76 303 208.14 330.64 122.5 
NMM091 qbacsp6-17 BACSP 2017 6 3.98 4.12 323.1 311.05 334.86 23.81 
NMM073 qbacsp7-16 BACSP 2016 7 2.76 3.93 315 17.4 331.59 314.18 
NMM089 qbacsp7-17a BACSP 2017 7 3.1 3.07 20.3 12.14 266.74 254.61 
NMM091 qbacsp7-17b BACSP 2017 7 5.18 5.29 255.2 29.24 293.79 264.56 
NMX001 qbacsp7-20 BACSP 2020 7 4.92 5.02 356 352.1 359.78 7.68 
NMM073 qbacsp8-16 BACSP 2016 8 3.44 3.84 153 28.78 331.72 302.94 
NMM073 qbacsp9-16 BACSP 2016 9 2.95 4.65 272 212.81 293.75 80.93 
NMM033 qbcasp10-14 BACSP 2014 10 4.91 3.57 273 257.39 288.94 31.55 
NMM073 qbacsp10-16 BACSP 2016 10 3.32 3.78 293 4.96 298.54 293.58 
NMM089 qbacsp10-17a BACSP 2017 10 3.91 4.83 271.2 236.45 296.47 60.03 
NMM090 qbacsp10-17b BACSP 2017 10 5.66 8.41 251.4 187.84 265.1 77.26 
NMX001 qbacsr1-20 BACSR 2020 1 9.78 13.43 403 401.72 419.25 17.52 
NMX003 qbacsr3-19 BACSR 2019 3 13.4 21.76 397 379.55 407.23 27.68 
NMX001 qbacsr3-20 BACSR 2020 3 7.75 8.86 433 429.22 437.42 8.2 
NMX001 qbacsr5-20 BACSR 2020 5 3.77 3.3 447 1.8 446.6 444.8 
NMX001 qbacsr7-20 BACSR 2020 7 3.76 4.12 356 251.2 361.82 110.62 
NMM033 qbacsn1-14 BACSN 2014 1 3.29 4.34 36.1 4.08 544.7 540.62 
NMX001 qbacsn1-20 BACSN 2020 1 9.2 14.09 402 400.11 419.25 19.14 
NMM033 qbacsn2-14 BACSN 2014 2 8.5 1.67 112 64.99 369.51 304.53 
NMM090 qbacsn2-17 BACSN 2017 2 9.72 12.53 57.8 31.15 84.51 53.36 
NMX003 qbacsn3-19 BACSN 2019 3 16.59 24.98 394 385.6 404.8 19.2 
NMX001 qbacsn3-20 BACSN 2020 3 6.85 9.79 433 412.19 436.1 23.91 
NMM090 qbacsn4-17 BACSN 2017 4 3.51 3.21 62.2 41.03 342.07 301.05 
NMM033 qbacsn5-14 BACSN 2014 5 3.67 4.1 419.1 371.39 427.69 56.3 
NMM089 qbacsn5-17a BACSN 2017 5 3.57 3.66 389.4 341.96 418.94 76.99 
NMM091 qbacsn5-17b BACSN 2017 5 5.28 6.13 43.2 18.95 59.98 41.04 
NMM073 qbacsn6-16 BACSN 2016 6 2.86 2.9 304 208.14 327.67 119.54 
NMM091 qbacsn6-17 BACSN 2017 6 3.36 4.14 322.7 254.26 334.86 80.61 
NMM089 qbacsn7-17a BACSN 2017 7 4.54 5.03 21.9 12.14 266.74 254.61 
NMM091 qbacsn7-17b BACSN 2017 7 6.06 6.83 257.2 158.02 286.6 128.58 
NMX001 qbacsn7-20 BACSN 2020 7 3.98 4.75 355 260.93 361.82 100.88 
NMM073 qbacsn8-16 BACSN 2016 8 3.76 3.95 139 28.78 320.78 292 
NMM073 qbacsn9-16 BACSN 2016 9 3.07 3.79 276 212.81 293.75 80.93 
NMX003 qbacsn9-19 BACSN 2019 9 4.57 6.37 54 46.79 261.1 214.31 
NMM033 qbacsn10-14 BACSN 2014 10 4.49 4.72 283.2 257.39 292.23 34.84 
NMM073 qbacsn10-16 BACSN 2016 10 3.79 5.23 291 252.29 296.47 44.19 
NMM090 qbacsn10-17 BACSN 2017 10 6.18 6.62 251.4 187.84 265.1 77.26 
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Figure 2. QTL distributed on each chr (blue bar) and average (R2) phenotypic variance explained 

(orange bar). 

 

Figure 3. Estimates of additive and dominant effects across 10 chrs in maize. 
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Overall, genetic effects had a positive 

effect in reducing BSR infection, except in chr 5 
and 9 in BACSP and chr 2 in BACSN. The 

estimate of QTL additive effect for BACSP 

varied from −12.93% (chr 1) to 6.32% (chr 
5), whereas the dominance effect ranged from 

−10.55% (chr 3) to 5.01% (chr 10). 

Interestingly, chr 1 (−12.93), chr 3 (−12.71), 

and chr 7 (−10.85) had high additive effects, 
indicating a positive contribution in terms of 

BSR resistance. Moreover, a high dominance 

effect was observed for chr 3 (−10.55) and chr 
7 (−9.59) that corresponded to a high additive 

effect. In the case of BACSN, a high additive 

effect was observed for chr 3 (−5.03), see 
Figure 3. 

 

Meta-QTL analysis 
 

The BSR resistance QTL was projected onto the 

consensus map via BioMercator V4.2.3 

software. Meta-analysis was conducted on the 

49 QTL identified for the three BSR resistance 
traits, and eight meta-QTL (see Figure 4) were 

selected on the basis of the lowest AIC value 

criteria and CI < 90 cM. The meta-QTL were 
unevenly distributed over all chrs. The number 

of meta-QTL ranged from 1 to 2 on chrs 1 to 

10 but not on chrs 4 and 8. One meta-QTL was 

selected on chrs 1, 2, 6, and 10, and two 
meta-QTL were selected on chrs 3 and 5. The 

95% CI of the selected meta-QTL ranged from 

2.15 cM to 89.31 cM with an average of 29.14 
cM.  

The corresponding genetic intervals 

were 404.32–411.02 cM for the meta-QTL 
MSRQTL1-1, 14.41–103.64 cM for MSRQTL2-1, 

391.02–404.08 cM for MSRQTL3-1, 431.57–

433.59 cM for MSRQTL3-2, 26.38–54.10 cM for 
MSRQTL5-1, 381.83–419.37 cM for MSRQTL5-2, 
306.48–337.65 cM for MSRQTL6-1, and 265.93–

287.01 cM for MSRQTL10-1, see Table 9.  

 
 

Figure 4. Meta-QTL position defined for BACSP, BACSR, and BACSN across biparental populations. 
 

DISCUSSION 
 

Applications of meta-QTL in plant 

breeding 
 

The implementation of molecular applications 

is becoming an important aspect of most plant 
breeding programs, such as rice and corn 

breeding programs. The native trait conversion 

(specifical introgression) of BSR into lines 
needs robust, stable, and refined QTL that are 

identified in the target marker regions and 

validated across different genetic populations 
(Collard and Mackill, 2008). Meta-QTL analysis 

allows validation and focuses on QTL regions 

identified from independent populations with 
different marker platforms (SNP TaqMan vs 

SNP Axiom), genetic backgrounds, and 
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Table 9. Meta-analysis of QTL controlling BSR resistance traits in maize. 

Meta-QTL Chr Position (cM) Flanking regions Weight CI (95%) Decision 

MSRQTL1-1 1 407.78 404.32−411.02 1 7.01 Select 

MSRQTL2-1 2 59.15 14.41−103.64 1 89.31 Select 

MSRQTL3-1 3 397.43 391.02−404.08 0.5 13.71 Select 
MSRQTL3-2 3 433 431.57−433.59 0.5 2.15 Select 

 4 -  - -  

MSRQTL5-1 5 40.55 26.38−54.10 0.33 29.01 Select 

MSRQTL5-2 5 400.34 381.83−419.37 0.67 38.28 Select 
MSRQTL6-1 6 321.77 306.48−337.65 1 31.68 Select 

 7 21.38  0.4 180.06  

 7 263.63  0.6 766.42  
 8 -  - -  

 9 54  0.33 214.38  

 9 273.99  0.67 213.16  
MSRQTL10-1 10 276.41 265.93−287.01 1 21.95 Select 

 

environments (Sosnowski et al., 2012; Kumar 

and Nadarajah, 2020). Our results showed the 
position of consensus QTL for BSR resistance.  

Comparing independent studies is 

difficult because the results of QTL detection 
are highly influenced by several interacting 

factors, such as genetic material (parents, 

populations, generations, and population 
structure), markers, and mapping methods 

(Austin et al., 2000; Ho et al., 2002; Mihaljevic 

et al., 2004; Lan et al., 2005; Li et al., 2009). 

Moreover, utilizing these reported QTL for 
direct implementation in maize breeding 

programs is difficult. At the same time, 

integrating distinct genetic maps into a single 
consensus map and extracting information 

integral to fine mapping activities and marker 

development are promising. The impact of this 
discovery would strengthen downstream 

applications in marker-assisted backcrossing 

not only for maize BSR but also for other 
native traits of different crops. 

Löffler et al. (2009) identified the 

parent of wheat (i.e., Chinese spring donor 
„Sumai 3‟) with high consistency contributing to 

Fusarium head blight resistance through meta-

QTL analysis. The authors recommended a) 

choosing parents for crossing to cover different 
resistance loci/QTL intervals, b) exploring new 

meta-QTL, and c) selecting markers from new 

meta-QTL for use in marker-assisted selection. 
Rong et al. (2007) suggested that for cotton, 

the compilation of different QTL mapping 

results yields a highly complete picture of the 
genetic control of a trait and may reveal 

patterns in the organization of trait variation. 

Furthermore, the authors recommended 
crossing closely related genotypes that differ 

by single-gene mutants that may yield 

profoundly different QTL landscapes, indicating 

that meta-analysis linked to synteny-based 

and expression-based information provides 
clues regarding specific genes for fiber 

variation and families involved in QTL networks 

(i.e., interacting genes). 
 

Distribution of QTL and meta-QTL across 

the maize genome 
 

The initial BSR resistance traits were projected 

unequally over different chrs in the maize 

genome. Across the genome, chr 4 had the 
lowest number of QTL, whereas chr 7 had the 

highest number of QTL detected (see Figure 2). 

Importantly, high (additive) phenotypic 
variance in each of the mapping populations 

could be attributed to QTL in chrs 1 (R2 = 

8.60), 2 (R2 = 10.03), and 3 (R2 = 16.24).  
The distribution of meta-QTL across 

the genetic linkage map was similar to that of 

the individual QTL. Genetic maps from several 
independent studies were merged via 

homothetic projection (Arcade et al., 2004). 

Given that different genetic maps share a 
sufficient number of common loci, these loci 

function as bridges between maps, and the 

projection of remaining loci is possible. Finally, 

a compiled map was obtained from multiple 
sources via iterative map 

compilation/projection. 

 
Mining of candidate genes in meta-QTL 

 

Several meta-QTL studies identifying 
consensus QTL for maize root-related traits 

have been reported. Guo et al. (2018) 

identified 45 maize homologs as candidate 
genes controlling maize root traits. In addition, 

three maize genes (GRMZM5G813206, 

GRMZM2G1 67220, and GRMZM2G467069) 
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identified in MQTL8-5 were associated with 

lateral root and crown root development. Two 
meta-QTLs, i.e., MQTL7-2 and MQTL9-1, were 

involved in nitrogen and phosphorus stress 

responses. The identified meta-QTL could be 
used indirectly for the abiotic stress 

improvement of maize root traits. However, 

the meta-QTL on chrs 7 and 9 were not 

selected due to their high CI, and no meta-QTL 
was detected on chr 8.  

In this study, the alignment of the 

genomic regions tagged by QTL was performed 
with the Maize Genetics and Genomics 

Database (Portwood et al., 2018). Two 

characterized proteins were found in 197 853–
202 163 Mb. Interestingly, in chr 3, this region 

harbors the protein-coding gene Defective 

Kernel 1 (DEK1). Tran et al. (2017) reported 
that the DEK1 protein is associated with a 

mechanically activated Ca2+ current in plants, 

suggesting that the perception of mechanical 
stress plays a critical role in plant 

development. The upregulation of the DEK1 

protein results in root inhibition by Gd3+ ions. 

In the practical sense, BSR infection induces 
mechanical stress in maize plants. Specifically, 

D. zeae weakens the stalk portion of the 

plants. 
 

 

CONCLUSIONS 
 

Studies conducted from 2014 to 2020 on 

different types and sizes of populations and 
density of genetic markers showed that the 49 

identified QTL were unevenly distributed in 10 

chrs. The regions identified in chr 1, 2, 3, 5, 6, 

and 10 across biparental populations with high 
QTL colocalization were considered as 

important QTL for BSR resistance traits with 

CIs of 2.15–89.31 cM. Furthermore, the 197 
853 Mb – 202 163 Mb physical positions on chr 

3 harboring the protein-coding gene DEK1 

provides insights into the correlation between 
mechanical stress and BSR resistance. 

Validation across different genetic backgrounds 

and population structures is recommended for 
fine mapping and marker development. 
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Appendix 

 
 

 
 

Figure 1. Distribution of BACSP in seven independent studies derived from donor parents 07MZF-BLTH and 10MZF-L4K2. The values of the 

resistant and susceptible parents are indicated by arrows. 


