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SUMMARY 

 

Understanding genotype by environment interaction (GEI) is important for crop 

improvement because it aids in the recommendation of cultivars and the identification of 

appropriate production environments. The objective of this study was to determine the 

magnitude of GEI for the grain yield of wheat grown under rain-fed conditions in Zambia by 

using the additive main effects and multiplicative interaction (AMMI) model. The study was 

conducted in 2015/16 at Mutanda Research Station, Mt. Makulu Research Station and 

Golden Valley Agricultural Research Trust (GART) in Chibombo. During2016/17, the 

experiment was performed at Mpongwe, Mt. Makulu Research Station and GART Chibombo, 

Zambia. Fifty-five rain-fed wheat genotypes were evaluated for grain yield in a 5 × 11 alpha 

lattice design with two replications. Results revealed the presence of significant variation in 

yield across genotypes, environments, and GEI indicating the differential performance of 

genotypes across environments. The variance due to the effect of environments was higher 

than the variances due to genotypes and GEI. The variances ascribed to environments, 

genotypes, and GEI accounted for 45.79%, 12.96%, and 22.56% of the total variation, 

respectively. These results indicated that in rain-fed wheat genotypes under study, grain 

yield was more controlled by the environment than by genetics. AMMI biplot analysis 

demonstrated that E2 was the main contributor to the GEI given that it was located farthest 

from the origin. Furthermore, E2 was unstable yet recorded the highest yield. Genotype G47 

contributed highly to the GEI sum of squares considering that it was also located far from 

the origin. Genotypes G12 and G18 were relatively stable because they were situated close 

to the origin. Their position indicated that they had minimal interaction with the 

environment. Genotype 47 was the highest-yielding genotype but was unstable, whereas 

G34 was the lowest-yielding genotype and was unstable. 

 

Keywords: Genotype–environment interaction, additive main effects and multiplicative 

interaction analysis, genetics, stability, Triticum aestivum L. 

 

Key findings: Results revealed that grain yield variation in wheat genotypes was mainly 

caused by the environment. Furthermore, the higher variance of GEI than that of genotype 

signified the importance of studies on GEI to the identification of high-yielding and stable 

wheat genotypes. 
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INTRODUCTION 

 

In Zambia, wheat (Triticum aestivum L.) 

is the second most important cereal crop 

after maize. It is grown under two 

agroclimatic systems: rain-fed (wet, 

warm, and humid conditions, November–

March) and irrigated systems (cool and 

dry conditions, May–September). Rain-fed 

wheat production is mostly undertaken by 

smallholder farmers because it is less 

expensive than irrigated production. 

Average wheat yields under rain-fed 

systems range from 1 t ha−1 to 2 t ha−1, 

whereas those under irrigated systems are 

8.0 t ha−1. Rain-fed wheat yields are not 

only low, they also fluctuate considerably. 

Their fluctuation can be attributed to 

different stresses, such as heat, drought, 

rainfall, soils, and diseases, and/or lack of 

improved and adaptable varieties (Tembo, 

2019). Yan and Kang (2003) reported that 

the performance of a genotype in an 

environment is a function of genotype, 

environment, and genotype by 

environment interaction (GEI). An 

understanding of the effects of the 

environment and its interaction with 

genotype could help identify environments 

that are suitable for certain genotypes 

(Annicchiarico, 1992). Thus, the 

assessment of genotypes across varying 

environments might be essential for 

selecting genotypes with high mean yields 

for wide or specific adaptation to improve 

the productivity of rain-fed wheat in 

Zambia. Tadesse et al. (2018) reported 

that a cultivar with a high mean yield and 

low degree of fluctuation when grown in 

diverse environments is desirable. Until 

now, no work has been carried out to 

study the effect of GEI on grain yield 

under rain-fed systems in Zambia. 

GEI is the differential expression of 

genotypes in response to changing 

environmental conditions (Sabaghnia et 

al., 2013). The differential expression of 

genotypes under changing environmental 

conditions is of great concern to plant 

breeders (Elakhdar et al., 2017) because 

it reduces relationships between 

phenotypic and genotypic values, thereby 

decelerating genetic progress (İlker et al., 

2009). Moreover, it increases the cost of 

testing because it requires evaluating 

genotypes in several environments 

(location and years) to obtain dependable 

results (Kang, 1998). 

 GEI can either be noncrossover or 

crossover. Noncrossover GEI is said to 

occur when one genotype outperforms 

other genotypes across all test 

environments (Hongyu et al., 2014). In 

noncrossover interaction, the ranking of 

genotypes remains constant across test 

environments. Crossover interaction 

occurs when genotypes exhibit differential 

and inconsistent responses to test 

environments (Annicchiarico, 1992). In 

crossover interaction, no genotype is 

superior in a number of environments and 

the ranking of genotypes changes from 

one environment to another (Gauch, 

2013). Ding et al. (2008) and Farshadfar 

et al. (2012) reported that the crossover 

type of interaction complicates the 

selection of superior genotypes and hence 

makes recommending varieties difficult 

due to the varying composition of the 

selected genotypes in different 

environments. Annicchiarico (1992) 

considered crossover interaction as a 

limitation to crop improvement. 

Nonetheless, an understanding of the 

scale and nature of GEI is crucial for 

designing suitable breeding tactics. With 

the change in environmental conditions, 

GEI effects must not be overlooked but 

instead should be exploited. 

 Plant breeders use numerous 

methods to exploit GEI and identify 

superior genotypes for either specific 

(crossover type) or wide adaptation 

(noncrossover) (Gauch et al., 2008; Kang, 

2020). Among such methods is the 

additive main effects and multiplicative 
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Table 1. Weather data of the six sites used in the study during 2015−16 and 2016−17 

seasons. 

Environ-
ments 

(E) 
Location Season Latitude Longitude Altitude Rainfall 

Temperature °C 

Max Min 

E1 Mtanda 2015/16 12°25.95ʹS 26°12.62ʹE 1300.0 m 941.9 28.4 20.0 

E2 Mt. Makulu 2015/16 15°32.946ʹS 28°15.078ʹE 1224.0 m 868.8 28.7 17.5 
E3 GART 2015/16 14°58.185ʹS 28°06.134ʹE 1148.0 m 695.8 27.8 17.9 
E4 Mpongwe 2016/17 12°06.622ʹS 31°14.660ʹE 1220.1 m 1216.1 28.8 15.6 

E5 Mt. Makulu 2016/17 13°32.831ʹS 28°03.626ʹE 1225.0 m 931.2 29.1 16.6 
E6 GART 2016/17 14°58.056ʹS 28°05.875ʹE 1147.0 m 756.8 27.2 17.4 

 

interaction (AMMI) model. AMMI is among 

the most widely used statistical method 

for studying and interpreting GEI (Hongyu 

et al., 2014). It is considered to be an 

effective tool for detecting GEI because it 

has few degrees of freedom and describes 

interaction in more than one dimension 

(Vargas et al., 2001). Another essential 

element of AMMI is that it integrates 

analysis of variance (ANOVA, an additive 

model) for the effect of genotype and 

environment with principal component 

analysis (PCA, a multiplicative model) for 

GEI into a single analysis (Kandus et al., 

2010). Furthermore, AMMI captures a 

massive portion of GEI and separates the 

main and interaction effects (Gauch, 

2013; Elakhdar et al., 2017). Another 

attractive component of AMMI analysis is 

its biplots. AMMI biplots are used to 

visualize the performance of genotypes in 

each environment and to visualize and 

understand GEIs. Biplots form the 

patterns and associations of genotypes 

and environments (Mohammadi et al., 

2018). 

 In view of the above information, 

this study aimed i) to determine the 

magnitude of GEI on the grain yield of 

wheat genotypes under rain-fed conditions 

by using the AMMI model; ii) to identify 

the best yielding and stable genotypes 

across test environments; and iii) to 

investigate the relationship among test 

environments for evaluating rain-fed 

wheat genotypes in Zambia. 

 

 

 

 

MATERIALS AND METHODS 

 

The experiment was conducted for two 

consecutive cropping seasons during 

2015/16 and 2016/17 at three sites in 

Zambia. In the 2015/16 season, the study 

was carried out at Mtanda Research 
Station (located at 12°25.959ʹS and 

26°12.620ʹE, Environment 1), Mt. Makulu 

Research Station (15°32.946ʹS and 

28°15.078ʹE, Environment 2), and Golden 

Valley Agricultural Research Trust (GART) 
(14°58.185ʹS and 28°06.134ʹE, 

Environment 3) in Chibombo district. The 

experiment during the 2016/17 season 

was performed at Mpongwe Seed-Co 
Research Farm located at 12°06.622ʹS and 

31°14.660ʹE (Environment 4), Mt. Makulu 

Research Station at 13°32.831ʹS and 

28°03.626ʹE (Environment 5), and GART 

(14°58.056ʹS and 28°05.875ʹE, 

Environment 6). The mean temperatures 

and average annual rainfall of the 

locations and seasons are presented in 

Table 1. 

 A total of 55 elite wheat genotypes 

were used in this study. The genotypes 

were obtained from Zambia Agriculture 

Research Institute (ZARI), Chilanga, 

Zambia, and the International Maize and 

Wheat Improvement Center (CIMMYT), El-

Batan, Mexico. The experiment was laid 

out in a 5 × 11 alpha lattice design with 

two replications in all locations and 

seasons. Each genotype was planted in 

four rows of 3 m long with 20 cm inter-

row spacings. The spacing between 
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plots was 40 cm. At planting, Compound D 

(10% N: 20% P: 10% K), a basal dressing 

fertilizer, was applied at the rate of 300 kg 

ha−1. At the first node stage, urea (46% 

N) was applied as the top dressing to all 

plots at the rate of 150 kg ha−1. All plots 

were harvested at maturity. 

 

Statistical analyses 

 

The collected data were subjected to 

ANOVA by using restricted or residual 

maximum likelihood in Genstat, version 

18 (VSN International, 2015) to 

investigate the apportioning of the sum of 

squares to genotype, environment, and 

GEI. Genotypes, locations, years, and 

their interactions were considered fixed, 

whereas replications and blocks were 

considered as random effects. 

 AMMI analysis was conducted by 

using the following model equation 

(Gauch, 2013): 

 

Yij = µ + αi + βj +∑n λn + γin + δjn + ρij 

 

where Yij is the yield of the i-th genotype 

in the j-th environment; μ is the grand 

mean; αi is the genotype deviation from 

the grand mean; βj is the environment 

deviation; λn is the square root of the 

eigenvalue of the interaction principal 

component axis (PCA) n; γin is the 

eigenvector value for genotype i and 

component n; δjn is the eigenvector value 

for environment j and component n, with 

both eigen vectors scaled as unit vectors; 

and ρij is the residual term. AMMI analysis 

was conducted in Genstat, version 18 

(VSN International, 2015). AMMI biplots 

were used to visualize the performance of 

genotypes in each environment; to 

visualize and understand GEI; and to 

explore relationships among the test 

environments in their ranking of 

genotypes in terms of yield. Angles of 

<90° between test environments indicate 

positive correlations, whereas right angles 

show no correlation. Test environments 

with angles > 90° indicate negative 

correlations (Yan and Tinker, 2006). 

 

 

RESULTS 

 

Combined ANOVA 

 

The combined analysis of variance of the 

Wald test statistics showed that all the 

components of variance, genotypes, 

environments, and GEI were highly 

significant (P ≤ 0.001) for grain yield 

(Table 2). The GEI components, genotype 

× location, genotype × year, and 

genotype × year × location effects were 

also highly significant (P < 0.001). ANOVA 

results suggested the need for conducting 

AMMI analysis to further split the GEI 

effects into different interaction 

components as indicated by Mujahid et al. 

(2011) and Hongyu et al. (2014).  

Table 2. Combined analysis of variance (Wald tests for fixed effects) for wheat grain yield 

across six locations during 2015−16 and 2016−17 seasons. 

Sequentially added terms to the fixed model 

Fixed term Wald statistic d.f. Wald/d.f. chi pr 

Genotype (G) 206.08 54 3.82 <0.001 

Location (L) 552.72 2 276.36 <0.001 

Year (Y) 236.34 1 236.34 <0.001 

G × L 185.75 108 1.72 <0.001 

G × Y 103.22 54 1.91 <0.001 

Y × L 164.96 2 82.48 <0.001 

G × Y × L 137.77 108 1.28 0.028 

d.f. = degree of freedom, chi pr = chi probability 
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Table 3. ANOVA of the AMMI model for the grain yields of the genotypes evaluated across 

six locations during 2015–16 and 2016–17 seasons. 

Source d.f. 
Sum of 
squares (SS) 

Mean square 
(MS) 

SS (%) 
Treatment 
TSS (%) 

G × E − SS 
(%) 

Treatments 329 1083374 3293*** 81.31   
Genotypes (G) 54 172639 3197***  15.94  
Environments 

(E) 
5 610113 122023***  56.32  

Block 6 2705 451ns    
Interactions 
(GEI) 

270 300622 1113***  27.75  

IPCA1  58 170858 2946***   56.83 
IPCA2  56 59993 1071**   19.96 

Residuals  156 69771 447ns   23.21 
Error 324 246270 760 18.48   

Total 659 1332349 2022    

 

Performance of genotypes across 

environments 

 

The yields of genotypes across 

environments and years ranged between 

0.28 and 3.65 t ha−1. The best-yielding 

genotype across environments was G47 

with the mean yield of 3.65 t ha −1, 

followed by genotype G44 with the yield of 

3.41 t ha−1. Genotype G34 provided the 

lowest mean yields (0.28 t ha−1) across 

environments. During the 2015/2016 

season, the highest yield was observed in 

environment E2, and the best yielder was 

genotype G47 with the yield of 6.94 t 

ha−1. In E1, G53 (2.65 t ha−1) was the 

highest yielder, whereas in E3 the top-

yielding genotype was G54 with the yield 

of 4.21 t ha−1. During the 2016/2017 

season, the highest-yielding genotypes in 

E4, E5, and E6 were G51 (3.33 t ha−1), 

G39 (5.72 t ha−1), and G26 (4.09 t ha−1), 

respectively. These results indicated the 

probable existence of GEI effects as 

environments and seasons had different 

top-yielding genotypes.  

 

AMMI ANOVA 

 

The ANOVA of the AMMI model showed 

that the environment, genotypes, and GEI 

were highly significant at P < 0.001 (Table 

3). The environment, genotype, and GEI 

explained 45.79%, 12.96%, and 22.56% 

of the total sum of squares, respectively. 

The environmental effect was 

approximately three times larger than the 

genotypic effect and twice the GEI. The 

total explained treatment sum of squares 

was 81.31%. The genotypes, 

environments, and GEI effects accounted 

for 15.94%, 54.32%, and 27.75% of the 

treatment variation, respectively. The 

combination of the genotypic and GEI 

components accounted for 46.69% of the 

treatment variation.  

 The GEI components, interaction 

PCA 1 (IPCA 1), and IPCA 2 were highly 

significant (P < .0001). IPCA 1 explained 

56.83% of the total GEI, and IPCA 2 

explained 19.96% of the total GEI. The 

two principal components together 

explained 76.79% of GEI.  

 

AMMI biplot analysis of genotypes 

and environments for grain yield 

 

The AMMI biplot showed that genotypes 

G12 and G18 were closer to the origin and 

had an IPCA 1 score that was close to zero 

(Figure 1). Genotypes G34, G43, G16, and 

G54 had positive IPCA 1 scores but were 

located far from the origin, whereas G47 

and G44 had negative IPCA 1 scores and 

were far away from the origin. The 

highest-yielding genotype across 

environments was G47, followed by G44, 

and G34 was the lowest-yielding genotype 

(Table 4, Figure 1). E1, E3, E4, and E6 

had positive IPCA 1 values, whereas E5 

and E2 had negative IPCA 1 values. E5 

was slightly closer to the origin than the 
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other environments, whereas E2 was far 

from the origin and had a large negative 

IPCA 1 value. E2 interacted strongly with 

genotypes with the same IPCA 1 sign, 

such as G47. E2 recorded the highest 

mean yield, followed by E6, then E5, 

whereas E1 had the lowest yield (Table 5, 

Figure 1). 

 Figure 2 of the AMMI biplot was 

used to explore GEI, discriminating ability, 

and the relationship of the test 

environments. E2 and E5 had negative 

PC1 scores, whereas the remaining 

environments in the study had positive 

PC1 scores (Figure 2). E2 was located far 

from the origin. E5 had negative PC2 

scores, and the other environments had 

positive PC2 scores. The PC2 score of E6 

was close to the origin, followed by that of 

E4. E2 had the longest vector, followed by 

E5, then by E1, E3, and E4. E6 had the 

shortest vector. Furthermore, the angle 

between E2 and the other environments 

was very large (>90°). The angle between 

E5 and E1, E3, and E4 was also large 

(>90°). The smallest angle was observed 

among environments E1, E3, E4, and E6 

(<90°). 

 

 
 

Figure 1. AMMI biplot displaying the mean performance of wheat genotypes and 

environments for grain yield under rain-fed conditions. Note: The names of the 

environments are given in Table 1. 
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Table 4. Average grain yields of 55 rain-fed wheat genotypes evaluated across six test 

environments during 2015–16 and 2016–17 seasons. 

Genotype 

code 

IPCA 1 

score 

Grain yield 

(kg ha−1) 

Genotype 

code 

IPCA 1  

score 

Grain yield 

(kg ha−1) 

G1 0.75212 2426.4 G29 1.92889 1294.8 

G2 0.92613 1452.0 G30 −1.08906 2028.0 

G3 −0.89608 1422.4 G31 2.16022 1250.4 

G4 −0.74449 1781.6 G32 0.86385 2072.0 

G5 0.2066 1898.8 G33 3.13147 741.6 

G6 −0.8969 1835.2 G34 3.77643 275.2 

G7 1.04724 1435.6 G35 −1.48398 2521.6 

G8 −0.24323 1412.0 G36 −1.56199 2615.2 

G9 −0.51845 1345.6 G37 −0.26804 2190.4 

G10 2.27024 1619.6 G38 −1.22498 2440.0 

G11 1.54824 1484.4 G39 −0.45528 2505.2 

G12 0.10404 1385.6 G40 0.29589 2173.2 

G13 0.98086 1371.2 G41 −0.76246 2140.0 

G14 0.27014 1571.2 G42 1.41394 2085.2 

G15 1.04734 1434.4 G43 3.69077 574.8 

G16 3.9042 1258.4 G44 −4.37247 3411.6 

G17 1.50164 1565.2 G45 −2.64297 1994.8 

G18 0.09448 1542.8 G46 1.91413 2132.8 

G19 2.36951 1243.6 G47 −8.64945 3645.6 

G20 0.89884 1541.6 G48 −1.32773 1993.6 

G21 1.24856 1565.2 G49 −2.4501 2562.8 

G22 0.15903 2231.6 G50 −1.52589 2089.6 

G23 −1.98686 2445.6 G51 −2.48352 2720.4 

G24 −3.91068 2447.2 G52 −0.75216 2620.0 

G25 −3.06732 2874.8 G53 2.89683 2028.8 

G26 −3.52405 2986.8 G54 4.44674 2015.6 

G27 −0.35012 1948.4 G55 1.94706 1072.4 

G28 −0.60715 2196.4 Means  1907.62 

 

 

Table 5. Average grain yield recorded per environment during 2015–16 and 2016–17 

seasons. 

Environment code IPCA 1 score Grain yield (kg ha−1) 

E1 5.23015 319.2 

E2 −14.5588 3948.4 

E3 6.23766 881.6 

E4 3.20495 1274 

E5 −1.43208 2466.4 

E6 1.31815 2556.4 
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Figure 2. GEI biplot showing the relationship among test environments in discriminating 

wheat genotypes for grain yield under rain-fed conditions. 

 

 

DISCUSSION 

 

The significant differences observed in 

yield showed that the genotypes used in 

this study were genetically diverse in 

terms of grain yield and that the 

environments were also different. In this 

study, not one genotype showed 

consistent grain yield in more than one 

environment, indicating that the 

genotypes exhibited a crossover type of 

interaction. The crossover type of 

interaction is critical to plant breeders as it 

hampers progress in selection. 

Furthermore, it increases the cost of 

genotype evaluation because it 

necessitates assessment in numerous 

environments to achieve good results 

(Kang, 1988). 

 The high magnitude of sum of 

squares due to the environment indicated 

that the test environments were different 

and were the major contributors to the 

total variation in grain yield. This result 

showed that in rain-fed wheat under 

study, grain yield was more controlled by 

the environment than by genetics. The 

present results were similar to the past 

findings on the grain yield of wheat 

genotypes under rain-fed conditions (Kota 

et al., 2013; Motamedi et al., 2013; 

Nowosad et al., 2018). The larger GEI 

component than genotypic main effect 

indicated the occurrence of a remarkable 

GEI. 
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Given that the variance of GEI was higher 

than that of genotype, the genetic 

improvement of grain yield in rain-fed 

wheat genotypes by selection could be 

less effective. The further testing of 

selected lines in several environments can 

be valuable for identifying high-yielding 

and stable genotypes. 

 The biplot of the IPCA 1 scores 

revealed that G12 and G18 were relatively 

stable and hence can be suitable for 

general adaptation (Figure 1). The very 

close location of these genotypes to the 

origin was an indication that they had 

limited interaction with the environment. 

Muhe and Assefa (2011) reported that 

IPCA 1 scores are indexes of the stability 

of a genotype across environments. They 

further pointed out that genotypes or 

environments with IPCA 1 scores closer to 

the origin are more stable than those with 

scores located away from the origin 

(either with positive or negative IPCA 1 

scores). Genotypes G34, G43, G16, and 

G54 with positive IPCA 1 scores were 

unstable because they were located far 

from the origin. Genotype G34 was not 

only unstable but also very low yielding 

and thus cannot be selected for any 

environment. Furthermore, genotypes 

G47 and G44, which had negative IPCA 1 

scores that were located very far from the 

origin, were very unstable. However, they 

were high yielding and hence are suitable 

for specific adaptation. 

 E5 and E6 were moderately stable 

because they were located close to the 

origin and had low IPCA1 scores (Figure 

1). Furthermore, E5 and E6 had 

moderately high yields. Environments with 

positive IPCA 1 scores but were located 

far from the origin, such as E1, were 

unstable and low yielding. E2 was high 

yielding but very unstable. The high yields 

observed in E2 could be due to the 

favorable temperatures and good rains in 

this location (Table 2). E2 was the most 

discriminating environment of genotypes 

for grain yield because it had the longest 

vector, followed by E5, then by E1, E3, 

and E4. E6, which had the shortest vector, 

was the least-discriminating genotype for 

grain yield and was hence less informative 

than other genotypes. Badu-Apraku et al. 

(2013) reported that environments with 

long vectors had the greatest 

discriminating ability, indicating that the 

genotypic variations observed in these 

environments could be dependable for the 

selection of genotypes. The environments 

could be ranked in terms of the 

discriminating ability of the genotypes for 

grain yield as follows: E2 > E5 > E1 > E3 

> E4 > E6. 

 The smallest angles (<90°) were 

observed among E1, E3, E4, and E6 

(Figure 2), indicating that these 

environments had a positive relationship. 

This implies that these environments 

produced comparable information 

regarding the genotypes. Thus, one of 

these environments could be used for 

evaluating genotypes without losing any 

information about the genotypes. By 

contrast, a negative relationship was 

observed between E2 and the rest of the 

environments and between E5 and the 

other environments. This observation was 

based on the principle that test 

environments are positively associated 

when the angle between them is less than 

90° and are negatively related when the 

angle between them is >90° (Ali et al., 

2015). 

 The biplot in Figure 2 revealed that 

E2 had the greatest contribution to the 

GEI sum of squares as shown by its 

distance to the origin. E4 and E6 had low 

contributions to the GEI sum of squares as 

indicated by their close location to the 

origin. By contrast, G47 was the major 

contributor to the GEI considering that it 

was farthest from the origin. Genotypes or 

environments close to the origin have a 

smaller interaction effect than those far 

from the origin (Ali et al., 2015). 

Genotype 47 was specifically adapted to 

E2, and G39 and G1 were specifically 

adapted to E5. 
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CONCLUSIONS 

 

The results revealed that the environment 

was the major contributor to the total 

variation in the grain yield of the rain-fed 

wheat genotypes under study, hence 

signifying the importance of conducting 

GEI analysis in Zambia. AMMI revealed 

that genotypes G12 and G18 were close to 

ideal genotypes and had low interaction 

with the environment. This result implied 

that these genotypes had almost stable 

yields across environments and thus could 

be used as source materials for breeding 

or as varieties for broadened adaption. 

Genotype 47 was high yielding, unstable, 

and specifically adapted to E2. 

Furthermore, E5 and E6 were identified as 

moderately stable environments with 

moderate interaction effect, and E2 was 

identified as unstable but high yielding. 

G47 and E2 were found to be the main 

contributors to GEI effects.  
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