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SUMMARY 

Drought is an important factor that reduces the yield and quality of sugarcane. Root 

growth and physiological traits are important for maximizing water uptake in order 

to improve drought resistance. This study compared the root, shoot, and 

physiological traits under drought stress (DS) as well as well-watered (WW) 

conditions of various sugarcane varieties grown in rhizoboxes in a greenhouse. Data 

were recorded for the following traits: relative water content, stomatal 
conductance, SPAD chlorophyll meter reading, and chlorophyll fluorescence at 90 

days after transplanting. Root samples were recovered from 11 soil layers at 10cm 

intervals from the top to the bottom of the rhizobox, for root length and root dry 

weight measurements. Drought was imposed on sugarcane at the early growth 

stages, which altered the root distribution patterns, creating differences evident 

among the sugarcane genotypes. The sugarcane genotypes adapted to water stress 

by increasing root length into deeper soil layers. Drought led to increased total root 
length in KK3, MPT06-166, K88-92, CP38-22, Kps01-12, and KpK98-40. Root 

lengths and stomatal conductance were positively correlated under both WW and 

DS conditions. Root distribution in the lower soil layers and the percentage of root 

distribution were higher than those under well-watered conditions. The knowledge 

gained from this study will aid parental selection in sugarcane breeding programs 

for drought resistance, as the findings strongly suggest that the physiological 
modification in the root system may be utilized as a useful drought-resistant 

mechanism. 
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Key findings: The adaptation of sugarcane subjected to DS conditions increased 
root length. This study will aid parental selection in sugarcane breeding programs 

for drought resistance, as the findings strongly suggest that the physiological 
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modification in the root system may be utilized as a useful drought-resistant 

mechanism. 
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INTRODUCTION 

Sugarcane is a globally important crop 

since it provides nearly 80% of the 

sugar consumed worldwide and is 

cultivated in roughly 130 tropical 

countries and territories located in the 
tropics and subtropics all over the 

world (Sentíes-Herrera et al., 2017). 

Sugarcane is used primarily for sugar 

production and as an efficient crop for 

the production of other products, such 

as electricity, bioethanol, and fertilizer 
(Unica, 2008). Global sugar production 

amounted to roughly 178.93 million 

metric tons (Shahbandeh, 2019). 

Despite increasing consumer demand 

for sugar, the cane yield and sugar 

yield in production systems remain 

low due to diseases, insect 
infestations and drought. Most of the 

sugarcane production areas in 

Thailand are located in rainfed 

conditions (Laclau and Laclau, 2009), 

and drought usually appears during 

the growing season, especially early 
season drought (Khonghintaisong et 

al., 2018). Early season drought and 

mid-season drought can reduce plant 

growth, resulting in plant stunting and 

restriction of tillering, leading to 

vacant and low millable stalk, and 

losses in both cane yield and sugar 
yield (Dinh et al., 2017). Drought 

stress can cause yield losses of up to 

60% (Robertson et al., 1999; Gentile 

et al., 2015). A drought-resistant 

sugarcane cultivar could maintain 

yield under both rainfed and drought 
stress conditions. However, an 

understanding of drought-resistant 
mechanisms is a major challenge in 

sugarcane breeding programs, as 

drought resistance is inherited 

genetically, and is associated with 

physiological characteristics. 

Common physiological traits; 
including leaf area, stomatal 

conductance, chlorophyll content, 

relative water content (RWC), 

photosystem II (PSII), photosynthesis 

efficiency, and photosynthetic rate 

have been used to improve drought 
resistance in sugarcane breeding 

(Silva et al., 2008). Moreover, 

reduction in stomatal conductance (to 

reduce water loss) and an increase in 

density and deep root traits (to 

increase water uptake ability) have 

been reported as mechanisms for 
adaptation in sugarcane to maintain 

water status in the plant under water 

stress conditions (Wasson et al., 

2012). Therefore, DS causes a 

decrease in stomatal conductivity to 

reduce water loss in the leaf. The 
resulting carbon dioxide entering 

through the stomata is also reduced 

as a result of a reduction in 

photosynthesis, which may also lead 

to low sugarcane yields. The 

mechanism of drought avoidance 

associated with root characters is to 
search for water in the soil layers. 

Under well-watered conditions, most 

sugarcane root systems remain in the 

upper soil layers (Smith et al., 2005), 

whereas a decrease in the moisture 

content of the soil surface activates 
growth of the roots in the lower soil 
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layers. The adapted root system acts 

to promote water absorption, thereby 

maintaining the water balance in the 

plant, and the adaptation of root 
system increases the amount of 

transpiration, which helps the 

sugarcane to avoid the danger of 

dehydration. 

Studies of root traits and 

physiological parameters can be useful 
to select sugarcane genotypes for 

drought avoidance mechanisms. The 

standard method used in previous 

investigations is to evaluate root 

growth and distribution patterns of 

sugarcane under natural conditions 
provided by field experiments. 

However, among the methods for 

collecting root data, such as drawings, 

monoliths, and auger methods; 

considerable time, labor, and costs are 

involved and the actual growth of the 

sugarcane roots is not visible. 
Although a greenhouse experiment is 

an indirect and cost-effective means of 

studying root distribution, evaluation 

of plant root growth is limited to the 

early growth stage. Studies of root 

systems in the rhizobox are mostly 
done with young plants or annual 

plant species. The use of split-root 

systems to monitor the effect of root 

distributions on the development of 

the root system is very interesting 

(Neumann et al., 2009). The rhizobox 

is effective for displaying the 
characteristics of root distribution that 

can be shown on all root systems, and 

has been employed in many plant 

species such as peanuts (Thangthong 

et al., 2016, 2017, 2019) and 

Jerusalem artichokes (Puangbut et al., 
2018), in which different varieties 

expressed differences in their root 

distribution patterns. However, the 

information on the changes in root 

distribution patterns under well-water 

conditions and drought conditions for 

characterization of sugarcane 

genotypes is still lacking. 

The aim of this study was to 

investigate root distribution and 
physiological responses under both 

well-watered and drought stress 

conditions for various sugarcane 

varieties grown in rhizoboxes. The 

information obtained in this study is 

necessary for further experiments, 
and may be applied for the selection 

of sugarcane varieties for drought 

resistance. 

MATERIALS AND METHODS 

Plant material and rhizobox 

preparation 

The experiment was conducted in 

rhizoboxes in a greenhouse at the 

Field Crops Research Station of Khon 
Kaen University, Khon Kaen, Thailand 

(16°28'N, 102°48'E, 200 m above sea 

level) from 21 June to 17 September, 

2016. The experimental design 

consisted of a 2x13 factorial in 

completely randomized design, with 
two replications. Factor A consisted of 

two water regimes: well-watered and 

drought stress. Factor B contained 13 

sugarcane genotypes: Yasawa, 

MPT03-320, PR3067, KK3, MPT06-

166, K88-92, CP38-22, UT5, Kps01-

12, KpK98-40, F152, BO14, and 
NCo382; which were selected by 

screening for differences in total root 

length at 21 and 35 days using a small 
pot experiment (Figure 1). 

In this study, root distribution 

and root architecture were 

investigated using the modified box–

pinboard method (needle-board) 
(Figure 2). The detailed method was 

clearly described in previous studies 

(Thangthong et al., 2016, 2017), and 

is briefly described herein. The 
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Figure 1. Relationships of 258 sugarcane genotypes in small pots. ㅇ= sugarcane 

genotypes, ● = 13 sugarcane genotypes were selected. 

Figure 2. Diagrammatic representation and dimensions of each rhizobox, with the 

position of six tubes of irrigation the section showing different elements of the 

system (a), spacing of the needles at the backside of the rhizobox (b), the size of a 

square unit (10cm×10cm) of a square unit’s observed area (c), and the image of 

sugarcane root system that was grown in a rhizobox at 90 days after planting (d). 

Yasawa 

MPT03-320 

NCo382 
KK3 

MPT06-166 

K88-92 

CP38-22 
UT5 

KpK98-40 

F152 
Kps01-12 

BO14 

PR3067 
0

500

1000

1500

2000

0 500 1000 1500 2000

T
o
ta

l 
r
o
o
t 

le
n

g
h

t 
(
c
m

)
 a

t 
3

5
 d

a
y
s
 

Total root lenght (cm) at 21 days 



SABRAO J. Breed. Genet. 51 (4) 470-493 

474 

rhizoboxes, 10 × 50 × 120 cm, were 

filled uniformly with dry soil to a 

height of 115 cm. The soil was then 

divided into 11 layers from the bottom 
of the boxes to the top of the boxes. 

The boxes had a needle grid at the 

back of the box, spaced 5 × 5 cm, in 

which to hold the roots in their original 

position after washing. A transparent 

window at the front of each box 
allowed for visually observation and 

photographs of root growth. 

A sugarcane set with a 

germinated single bud was plated at 

the center of each box, 5cm below the 

soil surface. The boxes were wrapped 
with a black sheet on all sides, and 

then wrapped again with aluminum 

foil. The front side of the boxes could 

be easily opened, exposing the 

transparent window. 

Irrigation treatments 

Irrigated water was supplied to the 

rhizoboxes through a tube irrigation 

system. Six tubes were installed in 

each rhizobox at 5, 15, 35, 55, 75, 

and 95 cm below the soil’s surface 
(Figure 2a); and, prior to 

transplanting, water was supplied at 

field capacity (FC) to all experimental 

units (rhizoboxes). At ten days after 

transplanting (DAT), water was 

provided at the soil surface of the two 

treatments, based on the water 
requirements of sugarcane for the 

uniformity of sugarcane set 

germination. 

Two water regimes consisting of 

a well-watered (WW) level and 

drought stress (DS) level were 
created. At 10 DAT, WW treatment 

was supplied to the boxes through 

three upper tubes at 5, 15, and 35cm 

below the soil surface at FC level from 

initiation of the experiment until 45 

DAT. At 45 DAT, WW treatment was 

supplied to the boxes at FC level until 

the end of the experiment through six 

tubes mounted at 5, 15, 35, 55, 75, 

and 95 cm below the soil surface. 
DS treatment was supplied to 

the boxes at FC level from experiment 

initiation until 30 DAT through three 

tubes mounted at 5, 15, and 35 cm 

below the soil surface, and then the 

irrigated water was reduced to half of 
the FC level until 45 DAT. From 45 

DAT to the end of the experiment, DS 

was supplied to the boxes at half of 

the FC level through three tubes 

mounted at 55, 75, and 95 cm at the 

lower soil layers. The soil moisture 
reduction was simulated similarly to 

that of typical field conditions in order 

to create higher soil moisture in the 

lower soil layers. 

The water requirements of the 

sugarcane were calculated daily, as 

the sum of water loss through 
transpiration and soil evaporation 

based on the crop water requirements 

(ETcrop) (Doorenbos and Pruitt, 1992; 

Jangpromma et al., 2012) as follows: 

ETcrop = ETo × Kc (1)

where ETcrop = crop water requirement 

(mm day-1); ETo = evapotranspiration

of a reference plant under specified 

conditions, calculated by the Class A 
pan evaporation method (mm day-1), 

and Kc = the crop water requirement 

coefficient for sugarcane. 

Plant management 

Before transplanting, each sugarcane 

genotype in each rhizobox was 

subjected to a curing process for five 

days until the buds and root 

primordial (0.5 cm) were germinated. 

Fertilizer grades 15-15-15 and 46-0-0 

were applied at 1.56g per rhizobox at 
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1 DAT and 60 DAT, respectively. Soil 

moisture contents at FC (13%) and 

the permanent wilting points (4.3%) 

were determined via the pressure 
plate method. 

Data collection 

Soil moisture content 

Soil moisture content was measured 

gravimetrically, using a micro-auger at 

14, 28, 45, 60, and 90 DAT. Soil 

moisture content was collected at soil 

depths of 10cm (14 DAT); 10 and 

25cm (28 and 45 DAT); 10, 25, 45, 
65, and 85cm (60 DAT); and 10, 25, 

45, 65, 85, and 105cm (90 DAT). Soil 

moisture content for each rhizobox 

was calculated as follows: 

(2) 

Physiological characteristics 

SPAD chlorophyll meter reading 

(SCMR), chlorophyll fluorescence, 
stomatal conductance, and RWC were 

recorded in each rhizobox at 90 DAT. 

All characteristics were recorded from 

09.00 am till noon. SCMR was 

recorded on the second or third fully-

expanded leaf from the top of the 
main stalk using an SPAD-502 

chlorophyll meter (Minolta SPAD-502 

meter, Tokyo, Japan). 

The same leaf samples were 

used for recording chlorophyll 

fluorescence using a chlorophyll 

fluorescence meter (MINI-PAM-2000, 
Heinz Walz GmbH, Germany). The leaf 

samples were stored under dark 

conditions for 30 minutes, and 

chlorophyll fluorescence was recorded 

using leaf clips (FL-DC, Opti-Science, 

Wetzlar, Germany) according to the 

method of Maxwell and Johnson, 

2000; described previously, to 
quantify the level of drought-induced 

photo-inhibition. 

Stomatal conductance was 

measured on intact leaves. The 

second or third fully-expanded leaf 

from the top of the main stalk was 
used for measurement of the trait 

using a porometer (model AP4, Delta-

T Devices, Cambridge, UK). 

The same leaf samples for 

measurement of stomatal conductance 

were used for the measurement of 
relative water content (RWC). The 

samples were harvested from the 

plants, and the leaf fresh weights were 

recorded. The leaf samples were cut 

into 3 pieces, width depending on leaf 

size of 13 sugarcane genotypes and 

length 3cm, placed in deionized water 
for 24 hours at room temperature, 

and leaf turgid weights were recorded. 

Leaf dry weight was measured after 

oven-drying at 80ºC for 48 hours 

(Silva et al., 2007). RWC was 

calculated using the following formula: 

(3) 

Root and shoot dry weight 

At 90 DAT, plant shoots were cut at 

the soil surface and shoot fresh 

weights were recorded. The samples 

were then oven-dried at 80ºC for 48 

hours and the shoot dry weights were 

recorded. After scanning for root 
length measurement, the root samples 

were oven-dried at 80ºC for 48 hours, 

and the root dry weights were 

recorded. 
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Root characteristics 

Root traits were measured at 90 DAT. 

The rhizoboxes were carefully washed 
with tap water to clean the root 

samples, and the needle grids were 

removed. Thereafter, two procedures 

were used to determine root traits: (i) 

photographic study, using a 

CanonEOS5D Mark IV24-70 f2.8 
(Canon Ltd., Tokyo, Japan), and (ii) 

root scanning, via an Epson 

(Perfection V700, Japan) for analysis 

of the root lengths. The photographs 

showed the root distribution patterns 

of the whole root system on a black 
sheet with a scale bar (Figure 2d). 

Roots were separated into square 

sections taken from the left, center, 

and right columns. A root sample of 

each rhizobox was divided into 11 soil 

layers at 10cm intervals from the top 

to the bottom of the box. 
In the root scanning procedure, 

the sample was separated into square 

unit sizes of 10cm×10cm (Figure 2d). 

Root length was analyzed by the 

WinRHIZO program (WinRHIZO Pro(s) 

V.2004a, Regent Instruments Inc.
Canada) for the root distribution

patterns. Root lengths in the upper

soil layers of 0–10, 10–20, and 20–

30cm were combined into a single 0–

30cm layer; whereas root traits at the

lower soil layers were combined to

form a single layer of 30–110 cm.

Statistical analysis 

Analysis of variance was performed for 

each characteristic following a factorial 

in completely randomized design, and 
the data for each water regime was 

analyzed separately. The least 

significant difference (LSD) was used 

to compare means. All analyses were 

performed using the Statistix 10© 

software program. 

RESULTS 

Soil moisture content 

As expected, soil moisture content 

were different for sugarcane varieties 

grown under well watered and drought 

stress conditions from 45 to 90 DAT 

(Figure 3a). In the soil depths of 10–

85cm at 60 DAT (Figure 3b) and 10–
105cm at 90 DAT (Figure 3c) soil 

moisture content were also different 

between water regimes. 

Root distribution pattern of 

sugarcane 

Images of the root distribution 

patterns of all 13 sugarcane genotypes 

grown in the rhizoboxes and captured 

at 90 DAT revealed the root 

distribution patterns of all the 

genotypes under WW and DS 
conditions (Figure 4). Superficial roots 

(roots emerging from higher nodes) 

were thinner and highly branched, 

extending laterally to form a dense 

network of responsible for uptake of 

water and nutrients from surface soil 
layers (Evans, 1935) were observed to 

appear mostly in the upper soil layers 

(Figures 4 and 5). 

Root length of the sugarcane 

genotypes were reduced in the upper 

soil layers (0–30cm) in response to 

drought stress. However, the roots in 
the lower soil layers (below 30cm) 

increased. KK3, K88-92, CP38-22, 

KpK98-40, BO14, and NCo382 

produced new roots (white in color) 

within the lower soil layers, whereas 

PR3067 and F152 increased buttress 
roots in the lower soil layers, in order 

to take up water and minerals from 

deep soil layers, especially under 

drought stress (Figure 4). 

KK3, K88-92, CP38-22, Kps01-12, 

and BO14 increased buttress roots  
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Figure 3. Soil moisture content (%) of drought stress (DS) and well-watered (WW) 

treatments at 14, 28, 45, 60 and 90 DAP (a), in different soil layers 10, 25, 45, 65 

and 85 cm at 60 DAP (b) and 90 DAP (c).  The bar is standard error (SE) for 
difference between two means statistically significant (P ≤ 0.01) 

within the lower soil layers (Figures 4 

and 5). Under well-watered conditions, 

K88-92, KpK98-40, BO14, and 
NCo382 developed superficial roots on 

the soil surface (Figure 4); and CP38-

22 and KpK98-40 maintained high 

root growth as indicated by their 

extended root length. 

KK3 had higher root length in 
lower soil layers under drought stress 

condition than under well-watered 

conditions (Figures 4 and 5). Kps01-

12 under drought stress was capable 

of maintaining high root lengths in 

both upper and lower soil layers. K88-

92 and BO14, under well-watered 
conditions, developed high root 

lengths in both upper and lower soil 

layers. Under drought stress 

conditions, these genotypes reduced 
root length in upper soil layers, and 

increased root lengths in lower soil 

layers. Under drought stress 

conditions, MPT03-320 and MPT06-

166 reduced root lengths in the upper 

soil layers to maintain root growth in 
the lower soil layers. 

The DS and WW treatments 

were compared for root length and 

root distribution at 90 DAT (Figure 6). 

For each of the 11 soil layers (at 10 

cm intervals from the top to the 

bottom of the rhizobox), the root 
length increased at the initiation stage  
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Figure 4. Root distribution patterns of 13 sugarcane genotypes grown in 

rhizoboxes under drought stress (DS) and well-watered (WW) conditions, at 90 

days after 

DS-Yasawa WW-Yasawa DS-MPT03-320 WW-MPT03-320 DS-PR3067 WW-PR3067 

DS-KK3 WW-KK3 DS-MPT06-166 WW-MPT06-166 DS-K88-92 WW-K88-92 

DS-CP 38-22 WW-CP 38-22 DS-Kps01-12 WW-Kps01-12 DS-UT5 WW-UT5 

DS-KpK98-40 WW-KPK98-40 DS-F152 WW-F152 DS-BO14 WW-BO14 

DS-Nco382 WW-Nco382 

1 
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Figure 5. Graphical presentation describing root length distribution patterns of 13 
sugarcane genotypes grown in rhizoboxes under drought stress (DS) and well-
watered (WW) conditions, at 90 days after planting. 
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Figure 6. Root length distribution of sugarcane under drought stress (DS) and 

well-watered (WW) of 11 (10cm interval) layers, and separated by percentage for 

two soil layers defined previously as upper (0–30cm of soil depth) and lower (30–
120 cm of soil depth), evaluated at 90 days after planting. The bar is standard error 

(SE) for difference between two means statistically significant (P ≤ 0.01). 
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up to 90 DAT. The sugarcane crops 

grown under drought treatments and 

well-watered treatments were 

significantly different (P ≤ 0.01) for 
root length at 90 DAT. The percentage 

of root length in the upper soil (0–

30cm) was lower than that in the 

lower soil (below 30cm) (Figure 6). 

Root lengths of most sugarcane 

genotypes grown under DS conditions 
were longer than those under WW 

conditions in most of the soil layers 

(Figure 6), except for MPT03-320, 

PR3067, and UT5 genotypes; which 

demonstrated an opposite trend 

(Figure 6). All sugarcane genotypes 
grown under drought conditions had 

higher percentages of root length than 

did the genotypes grown under well-

watered conditions. Most sugarcane 

genotypes grown under drought 

conditions had lower root percentages 

in the upper soil layers than did these 
same genotypes grown under well-

watered conditions, except for UT5, 

which had a similar percentage of root 

length under both drought and well-

watered conditions (Figure 6). 

However, the patterns of root growth 
between DS and WW treatments were 

rather different in all 13 genotypes, as 

the sugarcane genotypes grown under 

drought conditions produced higher 

percentages of roots and root lengths 

in lower soil layers than did these 

genotypes grown under well-watered 
conditions. 

Responses of root characteristics 

to water regimes 

Sugarcane genotypes were 
significantly different (P ≤ 0.01) in 

total root length. Drought stress 

increased total root length in KK3, 

MPT06-166, K88-92, CP38-22, Kps01-

12, and KpK98-40. It reduced root 

lengths in MPT03-320 and UT5, 

whereas Yasawa, PR3067, F152, 

BO14, and NCo382 were not 

significantly affected by drought stress 

(Figure 7a). 
Under drought conditions, KK3 

and Kps01-12 maintained root dry 

weight (root size), similar to those 

under well-watered conditions, 

however, root length was increased. 

MPT06-166, K88-92, CP38-22, KpK98-
40, and BO14 decreased root dry 

weight, while also increasing root 

length. MPT03-320, UT5, and NCo382 

displayed a decrease in both root dry 

weight and root length. For the 

remaining genotypes, the results were 
not significantly different between the 

two water regimes (Figure 7b). 

MPT03-320, KK3, MPT06-166, 

K88-92, CP38-22, Kps01-12, UT5, 

KpK98-40, BO14, and NCo382 had an 

increased root length-to-root dry 

weight ratio under DS conditions. The 
opposite trend was observed for 

Yasawa, PR3067, and F152 (Figure 

7c). 

Total dry weight, shoot dry 

weight, and root-to-shoot ratio 

Sugarcane genotypes were 

significantly different (P ≤ 0.01) for 

total dry weight, shoot dry weight, 

and root-to-shoot ratio under both 

drought stress conditions and well-

watered conditions (Figures 8a–c). 
Under well-watered conditions (Figure 

8a); MPT03-320, K88-92, CP38-22, 

UT5, BO14, and NCo382 had high 

total dry weight; KpK98-40 had a 

moderate total dry weight; and 

Yasawa, PR3067, KK3, MPT06-166, 
Kps01-12, and F152 had low total dry 

weight. Under drought stress 

conditions, MPT03-320, K88-92, CP38-

22, UT5, and NCo382 reduced total 

dry weight; PR3067 increased total 

dry weight; and Yasawa, KK3, MPT06- 
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Figure 7. Total root length (a), root dry weight (b) and root length/root dry weight 

ratio (c) of 13 sugarcane genotypes grown in a rhizobox under drought stress (DS) 

and well-watered (WW) conditions. The bar is standard error (SE) for difference 

between two means statistically significant (P ≤ 0.01) 
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Figure 8. Total dry weight (a), shoot dry weight (b) and root/shoot ratio (c) of 13 

sugarcane genotypes grown in rhizoboxes under drought stress (DS) and well-

watered (WW) conditions. The bar is standard error (SE) for difference between two 

means statistically significant (P ≤ 0.01). 
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166, Kps01-12, KpK98-40, F152, and 

BO14 had similar total dry weight 

under both drought stress and well-

watered conditions. 
MPT03-320, K88-92, CP38-22, 

Kps01-12, UT5, and NCo382 reduced 

shoot dry weight; PR3067 increased 

shoot weight; and Yasawa, KK3, 

MPT06-166, KpK98-40, F152, and 

BO14 had similar shoot dry weights 
under both drought stress and well-

watered conditions (Figure 8b). Total 

dry weight and shoot dry weight, 

under drought stress conditions, 

MPT03-320, MPT06-166, K88-92, UT5, 

KpK98-40, and BO14 reduced root-to-
shoot ratios. Yasawa, Kps01-12, and 

F152 increased root-to-shoot ratio; 

whereas PR3067, KK3, CP38-22, and 

NCo382 had similar root-to-shoot ratio 

under both drought stress and well-

watered conditions (Figure 8c). 

Relationships of root traits and 

above-ground traits within stress 

and non-stress environments 

Sugarcane varieties grown under 

drought stress conditions and well-
watered conditions the correlations 

were positively significant (P ≤ 0.05 

and 0.01) for shoot dry weight, total 

dry weight, and root-to-shoot ratio (r 

= 0.74, 0.63, and 0.57, respectively) 

(Figures 9c, 9d, 9f). However, the 

correlations between drought 
conditions and well-watered conditions 

of sugarcane varieties were not 

significant for total root length, root 

dry weight, and root length-to-root 

dry weight ratio (Figures 9a, 9b, 9e). 

K88-92, CP38-22, and MPT06-
166 had high root lengths under well-

watered conditions (high potential) as 

well as under both well-watered and 

drought stress conditions. KpK98-40, 

Kps01-12, KK3, and F152 increased 

root length under drought stress 

conditions; whereas MPT03-320 and 

UT5 reduced root length under 

drought stress conditions. Yasawa, 

BO14, NCo382, and PR3067 
maintained similar root lengths under 

both drought stress and well-watered 

conditions. 

Relationships between root and 

physiological traits under stress 
and non-stress conditions 

The correlations between stomatal 

conductance and total root length 

were positively significant under both 

well-watered conditions (r = 0.81, P ≤ 
0.01) and drought stress conditions (r 

= 0.75, P ≤ 0.01) (Figures 10c and 

11c). The correlations between the 

other physiological traits and root 

traits were not significant. Under 

drought stress and well-watered 

conditions, K88-92, CP38-22, and 
MPT06-166, which maintained high 

root lengths, were strongly associated 

with high stomatal conductance 

(Figures 10c and 11c). 

Relative water content indicates 

the plant’s water status. The 
sugarcane genotypes grown under 

drought stress conditions and under 

well water conditions at 90 DAT were 

significantly different for relative water 

content (Figures 10b, 11b). Under 

drought stress conditions, K88-92, 

CP38-22, and MPT06-166 had low 
relative water contents (Figure 10b). 

The differences in relative water 

content between drought stressed 

crops and well watered crops would be 

due to differences in soil moisture 

content. Relative water content was 
appropriate for the evaluation of plant 

water status, as this trait associated 

with soil moisture content. 

For the genotypes K88-92, 

MPT03-320, CP38-22, MPT06-166, 

and UT5, presenting high total root
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Figure 9. Relationships between drought stress (DS) and well-watered (WW) 

conditions of root length (a), root dry weight (b), shoot dry weight (c), root/shoot 

ratio (d), root length/root dry weight ratio (e), and total dry weight (f). 
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Figure 10. Relationships between root length and shoot dry weight (a), relative 

water content (RWC) (b), stomatal conductance (c), SPAD chlorophyll meter 

reading (SCMR) (d) and chlorophyll fluorescence (e), under drought stress (DS) 

conditions. 
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Figure 11. Relationship between root length and shoot dry weight (a), relative 

water content (RWC) (b), stomatal conductance (c), SPAD chlorophyll meter 

reading (SCMR) (d), and chlorophyll fluorescence (e) under well-watered (WW) 

conditions. 
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lengths per plant under well-watered 

conditions; total root length was 

associated with stomatal conductance 

(Figure 11c), whereas total root length 
was not associated with relative water 

content (Figure 11b). Sugarcane 

genotypes were significantly different 

for total root length under drought 

stress conditions. The correlation 

coefficients between root length and 
shoot dry weight (Figures 10a and 

11a), RWC (Figures 10b and 11b), 

SCMR (Figures 10d and 11d), and 

chlorophyll fluorescence (Figures 10e 

and 11e) were not significant. 

DISCUSSION 

Root development for sugarcane 

growth 

Root growth and distribution under 
diverse environments are important 

for predicting the responses of a plant 

to changes in the soil and 

environment. Drought tolerance 

strategies regularly include the 

development of expanded or deep root 
structures and other physiological 

functions, such as oxidative stress 

protection and a decrease in 

transpiration and osmo-regulation 

(Pirnajmedin et al., 2015). The main 

finding of this study is that water-

limited conditions change the root 
distribution patterns of the different 

sugarcane genotypes investigated. 

Plant roots grew into deeper soil 

layers in response to a decrease in soil 

water. The differential responses of 

sugarcane genotypes to drought 
stress for root traits and other 

physiological traits may be dependent 

on genetic control. Under water-

limited conditions, the morphology of 

the root structure is essential in 

accessing nutrients and soil water 

(Smith et al., 2005). Rapid 

development and suitable distribution 
of the sugarcane root system at 

deeper soil layers are essential to 

curtailing the adverse consequences of 

these dry periods on yield. Under well-

watered conditions, root density was 

high and uniform throughout each soil 
layer (Kato and Okami, 2011). Under 

water-limited conditions, a plant 

invests more in root growth than in 

shoot growth, in order to take up 

more water. Under water-deficit 

conditions, the translocation of 
assimilates to roots was higher than to 

shoots (Azhiri-Sigari et al., 2000). 

In the course of the early 

growth stages of the water-limited 

conditions, progressive accumulation 

of root dry matter was at the expense 

of shoot growth, where plants capable 
of adapting to dry conditions produced 

higher root/shoot ratios. Once a 

decrease in the soil moisture content 

is detected, roots must expand their 

distribution patterns and elongate into 

deeper soil layers for extracting and 
engaging a larger soil volume for 

water. As soil moisture at the soil 

surface and in the top soil profile was 

diminished under water deficit stress, 

the roots removed more water at a 

deeper profile. A deep root scheme is 

helpful for extracting water form 
substantial soil depths (Kavar et al., 

2007). This root system characteristic 

is an important consequence to soil 

drying and allows some roots to 

continue elongation under a water 

deficit to search more water. The 
distribution of the root schemes 

depends strongly on the soil moisture 

of the deeper soil layer. 
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Root characteristics under water 

deficit conditions 

Water deficits may adversely affect 
root growth in the upper soil layers, as 

they are dryer than the lower soil 

layers. Root growth in upper soil 

layers is then limited by drying soil, 

whereas root growth in the lower soil 

layers is continues in response to soil 
moisture. Root response to soil 

moisture in the lower soil is an 

important characteristic necessary to 

enhance water extraction from deeper 

soil, and improve the plant's potential 

to resume growth during drought. It 
has been proposed that breeding for a 

narrow xylem vessel in the seminal 

roots of wheat should accrue the 

hydraulic axial resistance, and enforce 

plants to apply the subsoil water more 

slowly (Passioura, 1972). Under 

drought stress conditions, several root 
morphological traits are modified in 

response to drought, in which the 

morphological modification affects 

total root length. Small diameter roots 

enable plants to efficiently enhance 

hydraulic conductance by increasing 
the surface area in contact with soil 

water and the soil volume that can 

store more water, and also help 

increase the roots’ hydraulic 

conductivity by decreasing the 

apoplastic barrier of water entering 

the xylem (Comas et al., 2012; 
Hernández et al., 2010). 

Consequently, a decrease in root 

diameter has been suggested as a 

trait for increasing the plant’s ability to 

hold water and improve productivity 

under water deficit conditions (Wasson 
et al., 2012). 

Under drought conditions, roots 

below 55 cm grow rapidly into lower 

soil layers in order to extract soil 

water from moist soil. The change in 

root growth in response to drought 

may indicate drought resistance under 

water deficit conditions. Under 

drought conditions, root lengths at soil 

layers of 55, 75, and 95 cm changed 
the distribution patterns compared to 

root lengths under well-irrigated 

conditions. Root biomass in the deeper 

soil layers consisted of newly growing 

roots, elongating roots from old 

primary roots in the soil layers, and 
branching roots from the roots already 

in existence (Azhiri-Sigari et al., 

2000). Under drought conditions, the 

lateral roots were induced by drying 

soil in the upper soil layers to develop 

new roots that grow into moist soil 
found in the lower soil layers (Nagel et 

al., 2015). The distribution and 

architecture of the root structures may 

depend strongly on the moisture of 

the deeper soil layers. In this 

experiment, differences in irrigated 

water caused drastic water deficits in 
drought treatment and changed the 

root distribution patterns of 

sugarcane. Under water stress 

conditions, the root lengths of 

sugarcane in the lower soil layers were 

longer than under well-watered 
conditions, and root growth reduces 

the food that is supplied to shoots. 

Within an early season drought, 

roots below 55cm of soil have more 

root tips (root apex zones) than those 

in the upper soil layers. Soil moisture 

in the lower soil layers was higher 
than the permanent wilting point, as 

water was obtainable for the plants. 

Water stress changed the root 

structure patterns and increased the 

root length of the roots below 55cm. 

Water deficits increase the root length 
and the percentage of roots in the 

lower soil layers (Songsri et al., 2008; 

Jongrungklang et al., 2011). In many 

of the aforementioned studies, water 

stress increased elongation of roots in 

deep soil layers, through both the core 
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sampling and auger methods, in which 

the recovery of whole root systems 

was not necessary to illustrate the 

complete root distribution pattern. 
This behavior suggests that root 

responses at given periods of water 

stress were determined essentially by 

root length and a change in the 

distribution pattern. 

 The root system may prove to 
be a more important sink than the 

upper portion of the plant under water 

deficit at the vegetative stage. The 

effects of root percentage and root 

size may be indicative of a drought 

resistance mechanism under water-
limited conditions. The positive 

relationship between root length and 

soil water content by the end of the 

drought period below the 40cm soil 

layer (Figure 6) shows the advantage 

of an increase in deep roots, needed 

to extract water from deep soil layers 
over extended periods. Nonetheless, 

the association between root length 

and physiological responses to plant 

water status are very complicated. 

Several root systems are considered 

to be essential in sustaining plant 
productivity under a water deficit. The 

overall size of a root system is related 

to the acquisition of water and 

nutrients from the soil, and can be 

associated with drought resistance and 

yield performance under drought. 

 
Physiological traits under different 

water regimes 

 

Shifts in allometry (metrics of root-to-

shoot relationships) and shoot stature 

can compensate for water shortages; 
and along with shifts in stand 

densities, can maintain stomatal 

conductance under xeric conditions 

(Mencuccini, 2003; Maseda and 

Fernandez, 2006). Root lengths in 

deeper soil is an important trait for 

preserving stomatal conductance 

under water-limited conditions. The 

rationale for imposing boundary 

conditions at the stem base is that 
water fluctuation through plants is 

primarily controlled by stomatal 

conductance. Indeed, the stomatal 

conductance is dependent upon both 

soil moisture and relative water 

contents. Under water deficit 
conditions, stomatal closure usually 

occurs in the afternoon, which can 

occur even under WW conditions 

under high evaporative demand. The 

stomata closure generally occurs 

earlier in the day, as the soil water 
reserve is depleted, so stomatal 

closure in the early morning occurs 

only with a very low soil water 

potential (Tardieu et al., 1992). 

Therefore, the soil water potential 

value that stops water uptake can be 

interpreted as triggering the stomatal 
closure and transpiration arrest, even 

in the early morning. 

 Studies of plants exposed to 

drought stress conditions focus on 

traits, such as root architecture and 

physiological features (i.e., leaf water 
potential, osmotic adjustment, and 

RWC) at the vegetative stage (Basu et 

al., 2016). The C4 plants grown under 

well-watered conditions with elevated 

CO2 levels reduced stomatal 

conductance that can lead to 

enhanced leaf growth and 
photosynthesis by mitigating the 

effects of transient water stress 

(Seneweera et al., 1998). Root 

systems of plants responded to soil 

fertility and soil moisture. Root growth 

was affected primarily by increased 
RWC (40–51%) (Derner et al., 2001). 

Drought-tolerant cultivars of 

sugarcane maintain a high RWC 

(Boutraa et al., 2010). Longer roots in 

the lower soil layers, in response to 

drought, are important for plant 
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resilience (Songsri et al., 2008; 

Jongrungklang et al., 2013). The 

selection of genotypes with high root 

lengths in lower soil layers will likely 
improve stomatal conductance and 

enhance photosynthetic capacity and 

plant growth within a drought-prone 

environment. 

CONCLUSION 

The sugarcane genotypes displayed 

different root distribution patterns and 

architectures. The adaptation of 

sugarcane subjected to DS conditions 
included a reduction in root lengths in 

the upper soil layer, and increased 

root lengths in deeper soil. Differences 

in the adaptation of the sugarcane 

genotypes were found for root traits 

under drought stress, with KK3, 

MPT06-166, K88-92, CP38-22, Kps01-
12, and KpK98-40 demonstrating high 

root lengths in the deeper soil, which 

further demonstrates a trait which 

may be identified as a drought 

avoidance mechanism. The present 

study further revealed that enhanced 
root length in deeper soil layers is an 

important trait for maintaining 

stomatal conductance under drought 

conditions, and a useful trait for 

parental selection in future breeding 

programs, again, as a drought 

avoidance mechanism. 
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