SABRAO Journal of Breeding and Genetics 48 (4) 465-473, 2016

MARKERS FOR CYTOPLASMIC MALE STERILITY (CMS) TRAITS IN CHILI PEPPERS (*Capsicum annuum* L.). I: MULTIPLEX PCR AND VALIDATION

T. YEH¹, S. LIN², H. SHIEH², Y. TEOH³ and S. KUMAR^{2,*}

¹Taiwan Agricultural Research Institute-Fengshan Tropical Horticultural Experiment Branch, Fengshan, Kaohsiung 830, Taiwan ²World Vegetable Center, Shanhua, Tainan 741, Taiwan

³Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sabah, Malaysia

*Corresponding author's email: sanjeet.kumar@worldveg.org

Email addresses of co-authors: tzuying139@fthes-tari.gov.tw; susan.lin@worldveg.org; yanjiteoh@yahoo.com

SUMMARY

Chili peppers (*Capsicum annuum* L.) are an important commercial crop valued for their pungent fruits, which are indispensable ingredients in many cuisines around the world. Cytoplasmic male sterility (CMS) is the most commonly used mechanism to produce commercial hybrid seeds of chili pepper. Using a set of 20 pepper (chili and sweet) CMS lines, their 20 maintainer lines and 10 restorer lines, we examined the validity of five male sterile cytoplasm (S-cytoplasm) specific (atp6-SCAR₆₀₇, Ψ atp6-2₈₇₅ coxII-SCAR₇₀₈, orf₄₅₆, SCAR_{130/140}) and one *restoration-of-fertility* (*Rf*) locus specific (CRF-S₈₇₀) markers. Out of five markers evaluated, co-dominant sequence characterized amplified region (SCAR) marker (SCAR_{130/140}) was found to be most reliable and reproducible for detection of cytoplasm type (S-cytoplasm vs. normal, N-cytoplasm) in peppers. Hence, this CMS marker (SCAR_{130/140}) and *Rf* locus associated marker (CRF-S₈₇₀) were used in a multiplex polymerase chain reaction (PCR) protocol to facilitate efficient screening of cytoplasm types in peppers. This multiplex PCR can be used for very efficient and cost effective screening of a large number of pepper lines at the seedling stage in only 15-20 days to determine distribution of cytoplasm types (S vs. N), by passing tedious and time consuming conventional process involving three seasons in developing testcross F₁s (in the first season), growing and obtaining F₂ seeds (in the second season) and finally examining segregation in the F₂ progenies (in the third season).

Key words: Chili pepper, germplasm screening, fertility restoration, hybrid seeds, sweet pepper

Key findings: The SCAR_{130/140} marker system was found to be most reliable for detection of CMS (S) and normal (N) cytoplasm in peppers (*Capsicum* spp.). Hence breeders can use this marker for rapid (~ 15-20 days) and highly cost effective determination of cytoplasm types (N vs. S) in pepper germplasm, by passing time consuming (~300 days) and tedious conventional approach.

Manuscript received: August 9, 2016; Decision on manuscript: August 30, 2016; Manuscript accepted: October 24, 2016. © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2016

Communicating Editor: Naqib Ullah Khan

INTRODUCTION

Peppers (*Capsicum annuum* L.) are an important commercial crop valued for their pungent (chili pepper) and non-pungent (sweet pepper) fruits. Chili pepper fruits and products are an indispensable food ingredient in many cuisines worldwide.

One important aspect of pepper production is the development and implementation of hybrid cultivars, which can take advantage of hybrid vigor. Cytoplasmic male sterility (CMS) is the most commonly used mechanism to produce commercial hybrid seeds of a number of crop plants, including chili pepper (Kaul, 1988; Lin et al., 2013; Reddy et al., 2015). The first pepper CMS plant (Scytoplasm) was discovered in the USA in a landrace chili pepper population collected from India (Peterson 1958). S-cytoplasm is the most widely used for the development of hybrid cultivars in India, China, South Korea and other countries (Kumar et al., 2009; Reddy et al., 2015). This male sterile cytoplasm has been found to be genetically similar to the other independently isolated and commercially used male sterile cytoplasm in India (Kumar et al., 2009). Therefore, diversification of pepper CMS cytoplasm is necessary to reduce the risks associated with predominant use of single male sterile cytoplasm. The susceptibility of Texas (T-) cytoplasm of corn to Helminthosporium blight in USA during 1970's, leading to devastation of T-cytoplasm based hybrid crops (Levings, 1990), is a well-known example of such risk.

Mitochondrial genes (*Yatp6-2*, CoxII) and open reading frames (orf456/orf507) related to pepper CMS phenotype (S-cytoplasm) have been identified and studied. These genes and orf are located on the edges of highly rearranged CMS specific DNA regions and near to repeat sequences (Jo et al., 2014). The *Patp6-2* gene is believed to be regulated through restoration-offertility (Rf) locus at the transcriptional level and the orf456/orf507 is regulated at post transcriptional level or translational level (Kim et al., 2006; Kim et al., 2007). A number of Scytoplasm specific (Kim et al., 2005; Kim et al., 2007; Gulyas et al., 2010) and Rf locus specific (Gulvas et al., 2006; Lee et al., 2008a,b) molecular markers have been developed in peppers. One of these Rf locus markers (Gulyas et al., 2006) was previously used to transfer the Rf allele from chili pepper into sweet pepper through marker-assisted backcrossing (Lin et al., 2015). After validation, these markers can be used to increase efficiency of CMS hybrid pepper breeding in various ways (Kumar et al., 2009). We examined the validity of CMS and Rf locus specific markers and developed a multiplex polymerase chain reaction (PCR)

protocol using the most reliable markers. Results are decribed in light of their use in pepper genetic resources and breeding programs.

MATERIALS AND METHODS

Plant materials

A total of 50 pepper lines were used in this study (Table 1). We evaluated 10 pairs of nearisoplasmic chili pepper CMS (S-cytoplasm; Alines) and their maintainer lines (B-lines; Ncytoplasm, designated as 1A/1B to 10A/10B) and 10 pairs of sweet pepper CMS and their maintainer lines (designated as 11A/11B to 20A/20B) developed by the World Vegetable Center (WorldVeg), as well as five each of chili pepper (21R to 25R) and sweet pepper (26R to 30R) known restorer lines (C-/R-lines, with unknown cytoplasm) (Table 1).

DNA extraction and markers for validation

Young, actively growing leaves (0.1 g) of two plants of each genotype were ground in liquid nitrogen using a mortar and a pestle; a modified CTAB extraction method was used for DNA extraction. To evaluate their validity, primers for six previously reported molecular markers associated with CMS (five markers) and *Rf* (one marker) (Table 2) were synthesized (Genscript Corporation, Taiwan) and used for PCR.

Polymerase chain reaction (PCR) and electrophoresis PCR for individual markers: The PCR reaction mixture (10 µl) consisted of 1µl DNA template (2 ng/ml), 2 µl 10x reaction buffer, 0.8 µl of 25 nM dNTPs, 2 µl of 10 µM primer set, and 0.1 µl HS DNA polymerase (Bioline, London, UK). The amplification profile consisted of 35 cycles of 30 sec at 95°C denaturation. 45 sec at annealing for temperature, and 45 sec at 72°C for extension and DNA synthesis. At the initial cycling profile, the reaction was heated for 5 min at 95°C and the final cycle was extended to 10 min at 72°C. All the amplified products were initially separated by electrophoresis on 1.5% agarose gel, and visualized by staining with nucleic acid staining solution (EtB"Out", Yeastern Biotech

Line code (P or NP) ^a	Line name	Pedigree	Phenotype	Genotype
1A(P)	AVPP0709-S	CCA-4916	CMS; A line	S- <i>rfrf</i>
1B(P)	VI060627;C05606	PBC362,C05606	Maintainer; B line	N-rfrf
2A(P)	AVPP0516-S	CCA7242;CCA4757	CMS; A line	S-rfrf
2B(P)	VI037614;TC06308	TC06308,PBC380	Maintainer; B line	N-rfrf
3A(P)	AVPP0517-S	CCA7243;CCA4758	CMS; A line	S-rfrf
3B(P)	VI060632;C05661	C05661,PBC483	Maintainer; B line	N- <i>rfrf</i>
4A(P)	AVPP9907-S	CCA7244;CCA4759	CMS; A line	S-rfrf
4B(P)	AVPP9907	9907-9611	Maintainer; B line	N-rfrf
5A(P)	AVPP9910-S	CCA7232	CMS; A line	S-rfrf
5B(P)	AVPP9910	9950-5633	Maintainer; B line	N- <i>rfrf</i>
6A(P)	AVPP0710-S	CCA4917	CMS; A line	S-rfrf
6B(P)	VI046838;TC06677	PBC292;TC06677	Maintainer; B line	N-rfrf
7A(P)	AVPP0309-S	CCA6475	CMS; A line	S-rfrf
7B(P)	AVPP0309	9849-5765	Maintainer: B line	N- <i>rfrf</i>
8A(P)	AVPP0310-S	CCA6476	CMS: A line	S- <i>rfrf</i>
8B(P)	VI060629:C05601	PBC378-2:C05601	Maintainer: B line	N- <i>rfrf</i>
9A(P)	AVPP0711-S	CCA7241:CCA4261	CMS; A line	S-rfrf
9B(P)	VI060630:C05671	PBC 534:C05671	Maintainer: B line	N- <i>rfrf</i>
10A(P)	AVPP9606-S	CCA7233	CMS: A line	S-rfrf
10B(P)	VI046844:TC06683	PBC308:TC06683	Maintainer: B line	N-rfrf
11A(NP)	AVPP9820-S	CCA7234	CMS: A line	S-rfrf
11B(NP)	AVPP9820	9847-4754	Maintainer: B line	N-rfrf
12A(NP)	AVPP9908-S	CCA7235	CMS: A line	S-rfrf
12B(NP)	AVPP9908	9946-2162	Maintainer: B line	N-rfrf
13A(NP)	AVPP9912-S	CCA7229	CMS: A line	S-rfrf
13B(NP)	AVPP9912	9946-2194	Maintainer: B line	N-rfrf
14A(NP)	AVPP9913-S	CCA7231	CMS: A line	S-rfrf
14B(NP)	AVPP9913	9946-2138	Maintainer: B line	N-rfrf
15A(NP)	AVPP9607-S	CCA7236	CMS: A line	S-rfrf
15B(NP)	VI037597	PBC84:TC06052	Maintainer: B line	N- <i>rfrf</i>
16A(NP)	AVPP9821-S	CCA7237	CMS: A line	S-rfrf
16B(NP)	AVPP9821	9852-1743	Maintainer: B line	N-rfrf
17A(NP)	AVPP1601-S	CCA13679	CMS: A line	S-rfrf
17B(NP)	AVPP1601	9950-5700	Maintainer: B line	N-rfrf
18A(NP)	AVPP1602-S	CCA13681	CMS: A line	S-rfrf
18B(NP)	AVPP1602	0407-7069	Maintainer: B line	N-rfrf
19A(NP)	AVPP1603-S	CCA13683	CMS: A line	S-rfrf
19B(NP)	AVPP1603, VI031628	C05464-B	Maintainer: B line	N-rfrf
20A(NP)	AVPP1604-S	CCA13684	CMS: A line	S-rfrf
20B(NP)	AVPP1604	0537-7007	Maintainer: B line	N-rfrf
21R(P)	VI037563	PBC473 C05625	Restorer: R line	$S/N^2 - RfRf$
22R(P)	VI059328	PBC142 C05573	Restorer: R line	S/N?- <i>RfRf</i>
23R(P)	AVPP9905	PP9955-15	Restorer: R line	S/N?-RfRf
24R(P)	AVPP0512	PP0537-7541	Restorer: R line	S/N?-RfRf
25R(P)	AVPP0605	PP0637-7505	Restorer: R line	S/N?-RfRf
26R(NP)	AVPP9807	PP9852-131	Restorer: R line	S/N?-RfRf
27R(NP)	AVPP9822	PP9852-190	Restorer: R line	S/N?-RfRf
28R(NP)	AVPP0515	PP0537-7044	Restorer: R line	S/N?-RfRf
29R(NP)	AVPP9904	PP9950-5558	Restorer: R line	S/N?-RfRf
30R(NP)	AVPP9808	PP9852-133	Restorer: R line	S/N?_RfRf
		117052 155	restorer, it inte	Sin Iyry

Table 1. Identifier, pedigree, phenotype, and genotype of the pepper lines used.

Marker name	5' to 3' sequence	Product size, bp	Reference			
Marker for S- or N-cytoplasm						
atp6-SCAR	AGTCCACTTGAACAATTTGAAATAATC	607 (S)	Kim and Kim, 2005			
	GTTCCGTACTTTACTTACGAGC					
coxII-SCAR	GTCGGGAGAACTACCTAACTA	708 (S)	Kim and Kim, 2005			
	GGCTACCTAGTGATTTACAAGCA					
orf456-SCAR	ATGCCCAAAAGTCCCATGTA	456 (S)	Kim et al., 2007			
	TTACTCGGTTGCTCCATTGTTT					
Ψatp6-2	GTAGTTCATTCGGACCTAGTAG	875 (S)	Ji et al., 2013			
	TGGATCTCGCTATTAACCAC					
SCAR	TTACGGCTCGTTACCGCAGC	130 (S)	Ji et al., 2014			
	AATTGACCGACCCGCCAT	140 (N)				
Marker for Rf locus						
CRF-SCAR	GTACACACCACTCG-TCGCTCCT	870 (<i>Rf</i> -)	Gulyas et al., 2006			
	TTCTTGGGTCCCTTT-CTTCCAA	-				

Table 2. Primer sequences of markers used for validation and multiplex studies.

CO., Ltd., Taiwan). Multiplex PCR using most reliable markers: For PCR, each 15µl reaction mixture consisted of 1 µl DNA template (10 ng/ml), 1.5 µl of 10x reaction buffer, 1 µl of 25 mM dNTPs, 0.12 µl of (5 units) Gold Tag DNA polymerase (JMR Holdings Co., United Kingdom), 0.2 µl of 10 µM CRF-S primers and 0.05 µl of 10 µM SCAR_{130/140} primers. The PCR cycle was performed following Lin et al. (2015) with minor modifications. The amplification profile consists of 35 cycles of 45 sec at 95°C for denaturation. 1 min at annealing temperature. and 1 min 30 sec at 72°C for extension and DNA synthesis. At the initial cycling profile, the reaction was heated for 10 min at 95°C and the final cycle was extended to 7 min at 72°C (Bio-RAD, Mexico).

All amplified products were initially separated by polyacrylamide gel electrophoresis (PAGE) on 6% polyacrylamide gels in 0.5 x TBE buffer, stained with ethidium bromide, and visualized using UVITEC Gel Documentation Systems & Software (Cambridge, United Kingdom).

RESULTS AND DISCUSSION

Substoichiometric shift in pepper CMS

Five CMS and one *Rf* locus specific markers were successfully applied in a panel of 50 pepper genotypes belonging to 20 pairs (40) of CMS and maintainer and 10 restorer (unknown cytoplasm, N/S-cytoplasm) lines. Data were analyzed for mismatch between phenotype and markers (Tables 3-5). In the initial screening with one pair of CMS and its maintainer lines with different concentrations of DNA, four CMS markers produced expected fragments in CMS lines (S-cytoplasm), but light intensity fragments were also amplified in maintainer lines (Ncytoplasm) with 50 ng and 10 ng template DNA (Figure 1).

Figure 1. Intensity of fragment generated by CMS specific orf456 marker in CMS (S-cytoplasm, 5A) and maintainer (N-cytoplasm, 5B) plants with three concentrations of template DNA.

Light intensity of CMS-specific fragment amplification at higher concentration could be explained by the presence of a very low copy number of CMS specific **mtDNA** (substoichiometric shift, Jo et al., 2014) in maintainer lines as mentioned in the case of pepper (Jo et al., 2009), common bean (Janska et al., 1998), and radish (Kim et al., 2007). Our amplification results support this; when we used a low concentration (2 ng/ml) of template DNA, amplicons in maintainer lines were not detectable (Figure 1). Hence selected 2 ng/ml concentration.

Markers for CMS and *Rf* locus

All five S-cytoplasm specific markers produced fragments of expected size in 10 chili pepper CMS lines, and as expected, these fragments were absent in their 10 maintainer lines (Table 3). Hence, there was no mismatch between CMS phenotype and presence of markers and male fertile phenotype and absence of markers in all 20 CMS and their maintainer chili pepper lines (Table 3). These five markers were also amplified in 10 sweet pepper CMS lines and their four maintainer lines (11B, 12B, 18B, 20B). However, in the remaining six sweet pepper maintainer lines, four markers (atp6-SCAR₆₀₇, *Watp6-2*₈₇₅, coxII-SCAR₇₀₈ and orf₄₅₆) produced mismatched CMS specific fragments, while SCAR_{130/140} did not (Table 4). The mismatch percentage for both atp6-SCAR₆₀₇ and Ψ atp6-2₈₇₅ was 5%, and 25% for both coxII- $SCAR_{708}$ and orf_{456} (Table 4). The levels of mismatch between the phenotypes and the markers found here are high enough to impede progress in breeding programs through limited accuracy of selection. Among the 10 restorer lines with unknown cytoplasm, SCAR130 and other CMS specific markers were present in one pepper restorer (25R, AVPP0605), chili indicating the presence of S-cytoplasm (Table 5).

As expected CRF-SCAR did not produce *Rf* locus associated 870 bp fragment (CRF-S₈₇₀) in chili and sweet pepper CMS and maintainer lines (Tables 3 and 4). However, this marker (CRF-S₈₇₀) was found to be absent in one known chili pepper restorer line (21R) and three known sweet pepper restorer lines (27R, 28R and 30R) with 40% mismatches (Table 5). These results indicate the narrow distribution and applicability of CRF-S₈₇₀ in improved restorer lines developed by the World Vegetable Center and examined in this study. Therefore, the use of CRF-S₈₇₀ will be very limited in a wide range of pepper germplasm targeted for marker assisted selection of restorer and maintainer genes.

Multiplex PCR for selected CMS and Rf markers

The results of individual marker analyses revealed that among the five CMS specific markers, $SCAR_{130/140}$ was the most reliable. Therefore, $SCAR_{130/140}$ and *Rf* locus associated CRF-S₈₇₀ markers were used in a multiplex PCR protocol to facilitate even more efficient screening of cytoplasm types in peppers. The results of $SCAR_{130/140}$ and $CRF-S_{870}$ analysis of all 20 CMS lines (S-cytoplasm), their 20 maintainer (N-cytoplasm) lines and 10 restorer lines (unknown cytoplasm) (Figure 2) were found to be consistent with the results of individual marker analysis of these lines (Tables 3, 4 and 5).

Male sterility including CMS based hybrid seed is becoming necessary to produce cost effective pepper hybrid seeds in competitive seed markets. Unlike sweet pepper, chili pepper CMS lines are used commercially for hybrid seed production (Lin et al., 2015). This also includes use of the World Vegetable Center's developed chili pepper CMS lines in India (Lin 2013; Reddy al., et al., 2015; et Schreinemachers et al., 2016). Sweet pepper CMS lines are known to have unstable expression of male sterility and fertility restoration of known sweet pepper restorer lines is inconsistent. With the exception of a casespecific use of Rf gene associated marker in peppers (Lin et al., 2015), markers developed for pepper Rf currently have limited chili applicability due to the lack of agreement between the marker and the phenotype (Kumar et al., 2007; Min et al., 2008; Jiang, 2015; this study). This lack of agreement could be because fertility restoration is influenced by temperature. quantitative trait loci (QTLs)/modifiers (Wang et al., 2004) and the presence of either an additional partial restoration (pr) locus tightly

Lines	Markers observed (expected)						
Lines	atp6-SCAR ₆₀₇	Ψatp6-2 ₈₇₅	coxII-SCAR708	orf ₄₅₆	SCAR _{130/140}	CRF-S ₈₇₀	
1A, 2A, 3A, 4A, 5A,	+ (+)	+ (+)	+ (+)	+ (+)	+/- (+/-)	-(-)	
6A,7A, 8A, 9A, 10A							
1B, 2B, 3B, 4B, 5B, 6B,	- (-)	- (-)	- (-)	- (-)	-/+ (-/+)	- (-)	
7B, 8B, 9B, 10B							
Mismatch (%)	0	0	0	0	0	0	

Table 3. Distribution of CMS and *Rf* specific markers in chili pepper CMS (S-*rfrf*) and maintainer (N-*rfrf*) lines.

+ = amplification; - = non-amplification

Table 4. Distribution of CMS and *Rf* specific markers in sweet pepper CMS (S-*rfrf*) and maintainer (N-*rfrf*) lines.

	Markers observed (expected)						
Lines	atp6-	Ψatp6-	coxII-	orf ₄₅₆	SCAR _{130/140}	CRF-S ₈₇₀	
	SCAR ₆₀₇	2 ₈₇₅	SCAR ₇₀₈		(S/N)		
11A, 12A, 13A, 14A, 15A, 16A,	+ (+)	+ (+)	+ (+)	+ (+)	+/- (+/-)	- (-)	
17A, 18A, 19A, 20A							
11B, 12B, 18B, 20B	- (-)	- (-)	- (-)	- (-)	-/+ (-/+)	- (-)	
13B	+ (-)	+ (-)	+ (-)	+ (-)	-/+ (-/+)	- (-)	
14B, 15B, 16B, 17B, 19B	- (-)	- (-)	+ (-)	+ (-)	-/+ (-/+)	- (-)	
Mismatch (%)	5	5	25	25	0	0	

+ = amplification; - = non-amplification

Lines/markers	atp6-SCAR607	Ψatp6-2 ₈₇₅	coxII-SCAR708	orf ₄₅₆	SCAR _{130/140}	CRF-S ₈₇₀
21R	+	-	-	+	-/+	-
22R	+	-	+	+	-/+	+
23R, 24R, 29R	-	-	-	-	-/+	+
25R	+	+	+	+	+/-	+
26R	-	-	+	-	-/+	+
27R, 28R, 30R	-	-	-	-	-/+	-
Mismatch (%)	Unknown cytoplasm (S/N)					

Table 5. Distribution of CMS and *Rf* markers in pepper restorer (S/N-*RfRf*) lines.

+ = amplification; - = non-amplification

Figure 2. Amplification_results of S-cytoplasm (130 bp) and N-cytoplasm (140 bp) and *Rf* gene associated markers in multiplex PCR in 50 pepepr genotypes (number corresponds to genotype in Table 1).

linked to Rf or a third allele of Rf locus (Lee *et al.*, 2008a,b). A very recent genome-wide analysis of chili pepper has revealed that 13 chili pepper domains have similarity to Rf genes of other species (Barchenger *et al.*, 2016). These Rf gene copies are mostly clustered on chromosome 6 (Jo *et al.*, 2010). This confirms the possible presence of many Rf loci and the reason for lack of a widely applicable Rf gene associated marker in peppers (Barchenger *et al.*, 2016).

Conventional germplasm characterization for cytoplasm type requires crop growing seasons/generations. three Cytoplasm (S or N) in a given accession can be tested by developing F_1 crosses using tester inbred accessions as female parents to known maintainer plants (in the first season), growing these F_1 crossed plants to produce F_2 seeds (in the second season) and examine F_3 progenies ability for their fertility restoration ability (in the third season). In contrast, most reliable CMSassociated marker (SCAR_{130/140}) developed by Ji et al. (2014) and validated during this study could be useful for efficient germplasm screening at the seedling stage (only 15-20 days) for cytoplasmic differentiation in peppers. Obtaining this strategic information is critical, as it will reveal the extent of cytoplasmic variability in widely grown cultivars, and anticipate any possible risk of vulnerability associated with monopolistic use and/or existence of genetically similar male sterile cytoplasm in pepper cultivars (Kumar et al., 2009). Out of 10 known restorer lines screened in this study, one (AVPP0605) possessed Scytoplasm. An Indonesian bacterial wilt resistant line, KR-B, is the donor of cytoplasm to AVPP0605 and other sister lines developed by WorldVeg (data not shown). Likewise, CM334, a famous Mexican landrace widely used as source of virus and Phytophthora blight resistant in pepper breeding program, also possess Scytoplasm (Jiang, 2015). We used developed multiplex PCR protocol to rapidly screen (at seedling stage) more than 1000 Capsicum gemrplasm (open pollinated varieties, hybrids, improved breeding lines, landraces) and the results revealed about 8.3% of peppers have Scytoplasm (data not shown). CMS causing cytoplasm has been found to be frequently distributed in open pollinated populations of cultivated onion (Havey, 1997), radish (Yamagishi and Terachi, 1996) and in wild species of radish (Yamagishi and Terachi, 1997). Evolutionary aspects of CMS (gynodioecious) in plant also suggest that CMS is predicted to be under balancing selection, under which the male sterilizing mitochondrial genome and *Rf* loci are favored, enabling their co-existence for a longer period of time (Lahiani *et al.*, 2013).

ACKNOWLEDGEMENTS

This work was supported by the Council of Agriculture (COA), Taiwan, under the "Strengthening the cooperation between World Vegetable Center and Taiwan research institutes on vegetable research and development" project (102AS-1.1.2-ST-a3).

REFERENCES

- Barchenger DW, Said JI, Ortega FA, Bosland PW (2016). Genome-wide identification of chile pepper pentatricopeptide repeat (PPR) domains provides insight into restoration of fertility. Ann. New Mexico Chile Conf., February 1-2, 2016, Las Cruces, NM.
- Gulyas G, Pakozdi K, Lee JS, Hirata Y (2006). Analysis of fertility restoration by using cytoplasmic male sterile red pepper (*Capsicum annuum* L.) lines. *Breeding Science* 56:331–334.
- Gulyas G, Shin Y, Lee JS, Hirata Y (2010). Alter transcript reveals an orf507 sterility realityrelated gene in chili pepper (Capsicum annuum L.). Plant Molecular Biology Report 28:605–612.
- Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998). Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. *Plant Cell* 10:1163–1180.
- Ji JJ, Huang W, Yin C, Gong ZH (2013). Mitochondrial cytochrome c oxidase and F_1F_0 -ATPase dysfunction in peppers (*Capsicum annuum* L.) with cytoplasmic male sterility and its association with *orf507* and *Ψatp6-2* genes. *International Journal Molecular Science* 14:1050–1068.
- Ji JJ, Huang W, Yin YX, Li Z, Gong ZH (2014). Development of a SCAR marker for early identification of S-cytoplasm based on mitochondrial SRAP analysis in pepper

(*Capsicum annuum* L.). *Molecular Breeding* 33:679–690.

- Jiang L (2015). Utilizing classical and molecular approaches to breed for disease resistant hybrid chile peppers (*Capsicum*). PhD Thesis, New Mexico State University, NM.
- Jo YD, Kim YM, Park MN, Yoo JH, Park M, Kim BD, Kang BC (2010). Development and evaluation of broadly applicable markers for *restorer-of-fertility* in pepper. *Molecular Breeding* 25:187–201.
- Jo YD, Choi Y, Kim DH, Kim BD, Kang BC (2014). Extensive structural variations between mitochondrial genomes of CMS and normal peppers (*Capsicum annuum* L.) revealed by complete nucleotide sequencing. *BMC Genomics* 15:561.
- Jo YD, Jeong HJ, Kang BC (2009). Development of a CMS-specific marker based on chloroplastderived mitochondrial sequence in pepper. *Plant Biotechnology Report* 3:309–315.
- Havey MJ (1993). A putative donor of S-cytoplasm and its distribution among open-pollinated populations of onion. *Theoretical Applied Genetics* 86: 128–134.
- Kaul MLH (1988). Male sterility in higher plants. Springer Verlag, Berlin.
- Kim DH, Kim BD (2005). Development of SCAR markers for early identification of cytoplasmic male sterility genotype in chili pepper (*Capsicum annuum* L.). *Molecules & Cells* 20:416–422.
- Kim DS, Kim DH, Yoo JY, Kim BD (2006). Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (*Capsicum annuum* L.). *Molecules & Cells* 21:135–140.
- Kim DH, Kang JG, Kim BD (2007). Isolation and characterization of the cytoplasmic male sterility-associated *orf456* gene of chili pepper (*Capsicum annuum* L.). *Plant Molecular Biology* 63:519–532.
- Kim S, Lim H, Park S, Cho KH, Sung SK, Oh DG, Kim KT (2007). Identification of a novel mitochondrial genome type and development of molecular markers for cytoplasm classification in radish (*Raphanussativus* L.). *Theoretical Applied Genetics* 115:1137–1145.
- Kumar S, SinghV, SinghM, RaiS, KumarS, RaiSK, RaiM (2007). Genetics and validation of fertility restoration associated RAPD markers in pepper (*Capsicum annuum* L.). *Scientia Horticulturae* 111:197–202.

- Kumar R, Kumar S, Dwivedi N, Kumar S, Rai A, Singh M, Yadav DS, Rai M (2009). Genetics and distribution of fertility restoration associated RAPD markers in inbreds of pepper (*Capsicum annuum* L.). *Scientia Horticulturae* 120:167–172.
- Lahiani E, Dufay M, Castric V, Le Cadre S, Charlesworth D, Van Rossum F, Touzet P (2013). Disentangling the effects of mating systems and mutation rates on cytoplasmic diversity in gynodioecious *Silene nutans* and dioecious *otitis*. *Heredity* 111:157–164.
- Lee JD, Yoon JB, Park HG (2008a). A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (*Capsicum annuum* L.). *Molecular Breeding* 21:95–104. Lee JD, Yoon JB, Park HG (2008b). Linkage analysis between the partial restoration (*pr*) and the *restorer-offertility* (*Rf*) loci in pepper cytoplasmic male sterility. *Theoretical Applied Genetics* 117:383–389.
- Levings CS (1990). The Texas cytoplasm of maize: Cytoplasmic male sterility and disease susceptibility. *Science* 250: 942-947.
- Lin SW, Shieh HC, Wang YW, Gniffke PA, Tan CW, Schafleitner R, Yang WJ, Kumar S (2015). Restorer breeding in sweet pepper: Introgressing *Rf* allele from hot pepper through marker-assisted backcrossing. *Scientia Horticulturae* 197:170–175.
- Lin SW, Chou YY, Ebert AW, Kumar S, Mavlyanova R, Rouamba A, Tenkouano A, Afari-Sefa V, Gniffke PA (2013). Pepper (*Capsicum* spp.) germplasm dissemination by AVRDC – The World Vegetable Center: an overview and introspection. *Chronica Horticulturae* 53:21–27.
- Min WK, Lim H, Lee YP, Sung SK, Kim BD, Kim S (2008). Identification of a third haplotype of the sequence linked to the *restorer-offertility (Rf)* gene and its implications for male-sterility phenotypes in peppers (*Capsicum annuum* L.). Molecules & Cells 25: 20-29.
- Peterson PA (1958). Cytoplasmically inherited male sterility in *Capsicum.American Naturalist* 92:111–119.
- Reddy MK, Srivastava A, Lin SW, Kumar R, Shieh HC, Ebert AW, Chawda N, Kumar S (2015). Exploitation of AVRDC's chili pepper (*Capsicum* spp.) germplasm in India. *Journal of Taiwan Society of Horticultural Sciences* 61:1–9.
- Schreinemachers P, Rao KPC, Easdown W, Hanson P, Kumar S (2016). The contribution of

international vegetable breeding to private seed companies in India. *Genetic Resources* & *Crop Evolution* doi:10.1007/s10722-016-0423-y.

- Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubeze AM, Palloix A (2004). QTL analysis of fertility restoration in cytoplasmic male sterile pepper. *Theoretical Applied Genetics* 109:1058–1063.
- Yamagishi H, Terachi T (1996). Molecular and biological studies on male-sterile cytoplasm

in the Cruciferae. III. Distribution of Oguratype cytoplasm among Japanese wild radishes and Asian radish cultivars. *Theoretical Applied Genetics* 93: 325–332.

Yamagishi H, Terachi T (1997). Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. IV. Ogura-type cytoplasm found in the wild radish, *Raphanus raphanistrum. Plant Breeding* 116: 323– 329.